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1 Introduction   

 
A cryptographic hash function can be informally defined as an easy to compute but hard to invert 
function which maps a message of arbitrary length into a fixed length (m-bit) hash value, and 
satisfies the property that finding a collision, i.e. two messages with the same hash value, is 
computationally infeasible.  
 
More in detail, a strong cryptographic hash function h is usually expected to satisfy the  
following requirements :  
 

(1) Collision resistance : it must be computationally infeasible to find any two distinct 
messages M and M’ such that h(M) = h(M’) . The best collision resistance one can hope  
to achieve with an m-bit hash function is upper bounded by the O(2m/2) complexity of a 
birthday attack [Oorschot] .  

 
(2) Preimage resistance (one wayness) : given the h(M) hash value of an unknown message 

M, it must be computationally infeasible to find any message M’ (equal or not to M) such 
that h(M’) = h(M). The best preimage resistance one can hope  to achieve with an m-bit 
hash function is upper bounded  by the O(2m) complexity of an “exhaustive” search.  

 
(3) Second preimage resistance (weak collision-resistance) : given any M known message 

and its h(M) hash value, it must be computationally infeasible to find any M’ message 
distinct from M such that h(M’) = h(M). The best preimage resistance one can hope  to 
achieve with an m-bit hash function is upper bounded  by the O(2m) complexity of an 
“exhaustive” search.  

 
Moreover, no better collision search, preimage search or second preimage search attack than the 
generic attacks mentioned in the definition of requirements (1) (2) and (3) must be known for h. 
 
Requirement (1) is by far the most important one in practice for the assessment of any candidate 
hash function such that the one considered in this report, since :  

• A collision resistant hash function is necessarily second preimage resistant, i.e. (1) ⇒(3) ; 
• Although some artificial counter examples of the implication (1) ⇒ (2) are easy to 

construct, it can be conjectured that for practical hash function candidates such as the one 
considered in this report, any computationally feasible preimage search attack would 
automatically result in a computationally feasible collision search attack. As a matter of 
fact, to search for a collision assuming a preimage search attack would exist, one just 
would have to draw a sufficient number of M message from a sufficiently large set of 
messages, and then to apply the preimage computation attack to h(M) until eventually an 
M’ preimage distinct from M would be found.   
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Thus, in order to assess the security of a candidate cryptographic hash function such as the one 
analysed in this report, it is nearly sufficient to restrict oneself to the investigation of the collision 
resistance properties of the considered function - and of the collision resistance properties on the 
underlying compression function (cf Merkle Damgard construction hereafter).  
 
Cryptographic hash functions represent a quite useful primitive in IT security.  Depending on the 
nature of the application, they may provide : 
- message integrity when used in a pre-processing step for digital signature algorithms; 
- information integrity when attached to a(n) (encrypted) message; 
- redundancy when appended to data before encryption; 
- protection of passwords if preimage resistance is achieved;  
- commitment  in zero-knowledge authentication schemes ;  
- derivation of a signature scheme from some zero knowledge schemes ; 
- pseudo-random string generation or key derivation for general applications;  
- a basis for constructions of MACs, stream ciphers and block ciphers. 
Depending on the considered application, all or only part of the collision resistance, preimage 
resistance and second preimage resistance properties defined above may be required.  
 
Most collision resistant hash function candidates proposed so far are based upon the iterated use 
of a so-called compression function, which maps a fixed length (m+n-bit) input value into a 
shorter fixed length m-bit output value. First padding data (which include filling bits and 
sometimes information such as the message length) is appended to the M message to be hashed as 
to obtain a padded message which length is a multiple of n, and then split into n-bit blocks M1 to 
Mk. Denote the compression function by f and the hash function by h. The m-bit hash value h(M) 
is computed using the recurrence   H0=IV0 (where IV0 is an m-bit constant initial value); for i=1 to 
k Hi  = f(Hi-1 ||Mi ; h(M) = Hk.  We are using in the sequel a terminology introduced by H. 
Dobbertin to distinguish two kinds of situations where two distinct (IV,M) and (IV',M') inputs 
have the same image by the compression function of an iterated hash function: we will restrict 
the use of the term collision to the case where in addition IV=IV' and use the term pseudo 
collision otherwise. It was independently shown by Merkle and Damgard [Damgard] that if a 
compression function f is collision and pseudo collision resistant, then under some simple 
additional conditions on the padding rule, the associated hash function is collision resistant. 
 
The most commonly used and (for the most recent ones) most trusted existing cryptographic hash 
functions do all belong to the MD-family of iterated hash functions, which includes MD4 (a 128-
bit hash function proposed in 1990 by R. Rivest [RivestMD4]), MD5 (a more conservative 128-
bit hash function proposed in 1991 by R. Rivest  [RivestMD5]), RIPEMD (a 128-bit function 
which mixes the outputs of two parallel improved variants of MD4,  proposed in 1995 by the 
European RIPE consortium [RIPE]), RIPEMD-128 and RIPEMD-160 (128-bit and 160-bit 
variants of RIPEMD [RIPEMD160]), SHA (a 160-bit hash function proposed in 1992 by NIST), 
and SHA-1 (which  was proposed by NIST as an improvement and replacement to the initial 
SHA [SHA1] in 1994). Finally, variant hash functions built around similar design principles than 
SHA-1, but characterized by a larger hash length value m have been recently proposed by NIST 
namely SHA-256 (m = 256),  SHA-384 (m = 384), SHA-512 (m = 512). As far as we know,  the 
main motivation for introducing new standard hash functions for this range of m values was to 
provide hash functions which 2m/2 = 2128, 2196 and 2256 security levels against collision search 
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attacks be consistent with the 2k = 2128, 2196 and 2256 security levels corresponding the three 
standard key sizes k = 128, 196 and 256 of the recently adopted Advanced Encryption Standard.  
 
The hash functions of the MD family and the associated compression functions have been 
submitted to an extensive cryptanalytic investigation during the past years. First, some collisions 
attacks were discovered on two of the three rounds of the MD4 compression function: an attack 
on the two last rounds, by den Boer and Bosselaers [BoerMD4], and an attack on the two first 
rounds leading to almost collisions on the full MD4, by Vaudenay [Vaudenay]. This provided 
initial  arguments in favour of moving from MD4 to MD5. Later on, Dobbertin established three 
major results on the cryptanalysis of the MD family of hash functions, namely (1) collisions for 
the full MD4 compression and hash functions that led to recommending the abandonment of its 
use, (2) collisions for both the first and the last two rounds of the compression function of 
RIPEMD, and (3) pseudo collisions on the whole MD5 compression [DobMD5], which do not 
lead to a collision of the associated MD5 hash function, but nevertheless invalidate the 
applicability of the Merkle-Damgard construction. Finally, Chabaud and Joux [Chabaud] 
discovered an attack allowing to find collisions for SHA in approximately 261 SHA computations 
(instead of the about 280 computations an ideal 160-bit hash function would require). As a 
consequence of these analyses, MD4 and SHA are no longer recommended, RIPEMD-128 seems 
to be a more conservative 128-bit hash function than MD5 and RIPEMD, and RIPEMD-160 and 
SHA-1 seem to be far from reach of known attack methods.  
 
The rest of this report is organised as follows. Section 2 briefly describes SHA-384 and SHA-
512, and makes some preliminary remarks on its main design feature and their comparison with 
the corresponding features of SHA-1. Section 3 investigates the applicability of the main 
currently known attacks of cryptographic hash functions to SHA-384/512. Section 4 investigates 
other potential attack directions. Finally, Section 5 concludes our report .   

2 Description and first remarks 

2.1 Outline of SHA-384 and SHA-512 
 
SHA-512 is an MD-type hash function and works as follows : first the message is right-padded 
with a binary ‘1’ then it is cut into blocks of 1024 bits. If the length of the last block does not 
exceed 896 bits, as many zeros as necessary are appended to fill 896 bits and the binary length of 
the original message (before padding) is appended in the last 128 bits of the block to form a 
1024-bit block. Else, the block is filled with zeros up to a length of 1024 bits, and an extra block 
is appended filled with 896 zeros; again the binary length of the original message is appended in 
the last 128 bits to form a complete 1024 bit block. This form of padding is non-ambiguous and 
is an example of a valid Merkle-Damgard strengthening.  
  
After the padding phase, registers a, b, c, d, e, f, g, h are initialised to 8 pre-determined 64-bit 
constants H0 to H7 [SHA2] for the first message block, and to the intermediate hash value for the 
following blocks. Next, 80 rounds of the compression function are applied following the pseudo-
code given hereunder. 
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T1 = h + ∑1 (e) + Ch(e,f,g) + Kt + Wt; 
T2 = ∑0 (a) + Maj(a,b,c) ; 
h = g ; 
g = f ; 
f = e ; 
e = d + T1 ; 
d = c ; 
c = b ; 
b = a ; 
a = T1 + T2 ; 

 
 
Where the Ch, Maj, ∑0, and  ∑1 functions are independent of the round number1, and where Kt 
and Wt are a constant and a message word which value depends upon the round number t 
[SHA2]. Finally, the output of the registers is added to the previous intermediate hash value to 
give the new intermediate hash value, according to the Davies-Meyer construction. See Figure 2 
for an outline of one round of the compression function. 
 
The ‘message schedule’ takes the original 1024-bit message block as input and expands these 16 
64-bit words into 80 words, one for every round of the compression function. This is done 
according to the following recurrence formula : 

Wt = σ1(Wt-2) + Wt-7 + σ0(Wt-15) + Wt-16; 
Where σ1 and σ0 2are given in [SHA2]. See Figure 1. 
 
After all consecutive 1024-bit message blocks have been hashed, the last intermediate hash value 
is the final overall hash value. 
 
The SHA-384 hash computations exactly the same  as those of  SHA-512, up to the two 
following  differences :  

• the H0 to H7 constants used for SHA-384 are not the same as those used for SHA-512 
• the SHA-384 output is obtained by truncating the final overall hash value H0

(N)|| …||H7
(N) 

as to only output the 6 left words  H0
(N)|| …||H5

(N) whereas no such final truncation is 
performed in the case of SHA-512.  

 
 

 
                                                 
1 The Ch, Maj, ∑0, and  ∑1 functions operate on 64-bit input words, and produce the 64-bit words given by 
Ch(X,Y,Z) = (X ∧  Y) ⊕  (¬X ∧  Z) ; 
Maj(X,Y,Z) = (X ∧  Y) ⊕  (X ∧  Z) ⊕  (Y ∧  Z) ; 
∑0(X)= ROTR28(X) ⊕  ROTR34(X) ⊕  ROTR39(X) 
∑1(X)= ROTR14(X) ⊕  ROTR18(X) ⊕  ROTR41(X) 
  
2 The σ 0 and  σ 1  functions operate on 64-bit input words, and produce the 64-bit words given by 
σ 0 (X)= ROTR1(X) ⊕  ROTR8(X) ⊕  SHR7(X) 
σ 1 (X)= ROTR19(X) ⊕  ROTR61(X) ⊕  SHR6(X) 
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Figure 1 : (Wt) message schedule recurrence 
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Figure 2 : Hash computation, state register update function 
 

2.2 Preliminary remarks and comparison with  SHA-1 

2.2.1 Message schedule computations 
 
The (Wt) message schedule computation is depicted in Figure 1 above. It  can conveniently be 
represented by a 16-stages feedback register.   
 
Its overall structure is similar to the one used in SHA-1 : in both cases (Wt) is produced by a 
recurring sequence of depth 16 initialised with the  16-words message block M = M0,M1,...,M15 .  
The most significant differences between the SHA-1 and SHA-384/512 message schedules are 
the following :  
 

   
. Unlike the SHA-1 message schedule computations, the SHA-384/512 message schedule 

computations are not GF(2)-linear, because of the involvement of the + addition instead of ⊕ . 
This complicates the message schedule computations, but on the other hand it makes the 
properties of the message schedule recurrence more difficult to analyse, because the set of 
possible difference patterns is no longer a linear code. 
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☺ The SHA-1 property that unlike in SHA-0, the recurrence relation mixes the various bit 
positions is strengthened, due to the involvement of the bit rotations in σ0 and σ1 (which play 
a similar role in the SHA-384/512 recurrence to the ROTL1 rotation in the SHA-1 recurrence) 
and also because of the diffusion effect introduced by the + addition in the SHA-384/512 
recurrence. 

 
☺ The circular rotation invariance properties of  input words are not preserved  in the SHA-

384/512 message schedule computations (whereas they are preserved in the SHA-0 and SHA-
1 computations) :  this is due to the use of + instead of ⊕  and to the fact that σ0 and σ 1 do not 
only involve ROTL circular rotations, but also shift operations (see Section 4.2 for details). 

 
 

/ The message schedule length to working variable register length ratio, which represents the 
number of "full rotations" of the working variable register during each compression function 
computation, is much lower in the case of SHA-384/512 as in the case of SHA-1 : the value of 
this ratio is only 80/8 = 10 for SHA-384/512 instead of 80/5 = 16 for SHA-1. The exact 
performance to security balance argumentation behind the substantial diminution of this ratio 
are unclear to us.  This may look at first glance as a serious decrease of the security margin 
offered by SHA-384/512. On the other hand one may probably consider that the decrease of 
this ratio is at least partly compensated by the higher complexity of the working variable 
update function of SHA-384/512  and the fact that unlike in SHA-1 two register values are 
substantially modified at each round.  

 

2.2.2 State register update function 
 
The overall structure of the 8 64-bit SHA-384/512 state registers (a,b,c,d,e,f,g,h) update function 
performed at each round is quite similar to the one of the 5 32-bit SHA-0 and SHA-1 state 
registers (a,b,c,d,e) update function. The following differences are however worth being noticed: 
   
☺ The SHA384/512 round function is substantially more complex than the SHA-0 and SHA-1 

one and achieve stronger and faster diffusion effects.  As a matter of fact : the Σ0 and Σ1 GF(2) 
linear functions achieve a faster diffusion and mixing of the various bit positions than the 
ROTL5 an ROTL30 rotations of SHA-1 ; both the Majority and the Choice non-linear functions 
are applied at each round whereas at most one of these functions is applied in the case of 
SHA-1 ; two register words (namely these values contained in the d and h stages of the round 
input) are substantially modified at each round, whereas only the content of the e stage is 
substantially modified in the case SHA-1. 

 
/ The state register update function (see figure 2)  is the same for all rounds (except of course 

from the facts that the Kt constants are pair-wise distinct and the Wt input words are generally 
distinct for distinct words).  The SHA-0 and SHA-1 state register update functions are less 
uniform, since rounds 0 to 19, 20 to 39, 40 to 59 and 60 to 79 of these functions involve the 
Choice(x,y,z), Xor(x,y,z), Majority(x,y,z) and Xor(x,y,z) ternary functions respectively. It may 
be conjectured that this lesser uniformity represents a slight security advantage for SHA-1. 
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2.2.3 Majority and choice functions 
 
In this section we investigate the elementary properties of the majority and choice functions as 
well as the modular addition operation.  
 
• Both the choice and majority functions operate on individual bits and are balanced on 

their respective input domains.  
 
Recall their respective formulae : 
 

Ch(X,Y,Z) = (X ∧  Y) ⊕  (¬X ∧  Z) ; 
Maj(X,Y,Z) = (X ∧  Y) ⊕  (X ∧  Z) ⊕  (Y ∧  Z) ; 

 
We can compute the difference distribution table of their output with respect to a 3-bit input 
difference. The notation of the table is as follows : for every 3-bit input difference, a ‘0’ denotes 
that the output difference is always zero, a ‘1’ denotes that it is always one, and a ‘0 /1’ denotes 
that it is zero in half of the cases and one the rest of the time. 
 

X Y Z Choice Majority 
0 0 0 0 0 
0 0 1 0/1 0/1 
0 1 0 0/1 0/1 
0 1 1 1 0/1 
1 0 0 0/1 0/1 
1 0 1 0/1 0/1 
1 1 0 0/1 0/1 
1 1 1 0/1 1 

 
For subsequent section 3.2, it is useful to note that both functions achieve a zero output 
difference (i.e. an internal collision) with average probability ½.if exactly one of the three input 
differences is equal to 1.  
 
• Concerning the modular addition operation, one can easily see that if A and B differ in only 

the i-th bit, then with probability ½ if a third word C is added to A and B,  (A+C) and (B+C) 
also differ in only the i-th bit. The only special case here is when the difference is located in 
the most significant bit ; in this case the carry bit does not propagate any difference, thus 
(A+C) and (B+C) differ also only in the most significant bit (with probability one) due to the 
modular reduction. 

 
Thus on average, a one-bit difference before a modular addition does not propagate after the 
addition operation with probability ½. 
 

2.2.4 Sigma functions 
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In this Section we state some elementary properties of the Σ0 and  Σ1 functions involved in the 
state register update function and of the σ0 and σ1 involved in the  message schedule 
computations : 
 
• The Σ0 and  Σ1

  GF(2)- linear mappings are one to one. This is a simple consequence of the 
fact that if one represents any 64-bit word W = (W[0]W[1]….W[64]) as a GF(2)[X]/X64+1 
polynomial W[0] +W[1] X+ W[2] X 2+…+W[63] X63, then  Σ0 and  Σ1 are represented by a 
multiplication by the X28+X 34+X 39  and X14+X18+X41 polynomials of GF(2)[X] respectively, 
and of the observation that these two polynomials are co-prime with the X64+1 = (X+1)64 
polynomial of GF(2)[X].  

 
• The σ0 and  σ1 GF(2)- linear mappings are one to one  (in order to check this property, we 

computed the 64x64 GF(2) matrices representing  σ0 and  σ1, and checked that the kernel of 
this matrix was restricted to the null vector).  

2.2.5 Constants 
 
The choice of the H0

(0) to H7
(0) and K0 to K79  constants plays an important role in the security of 

SHA-384 and SHA-512 , since : 
 

• the main difference between the various rounds of the SHA-384/512 compression 
function consists in the use of pair-wise distinct Ki constants (cf Section 2.2.2 above) ; 

 
• the use of too symmetric constant values would lead to strong weaknesses in close 

variants of SHA-384/512  (see Section 4.2 hereafter). 
 

We believe the way the actual SHA-384/512  H0
(0) to H7

(0) and K0 to K79 constant values are 
derived is appropriate to avoid any undesirable symmetry property.  [They are determined by the 
fractional parts of the square roots of the first 8 prime numbers (SHA-512) or the next 8 prime 
numbers (SHA-384) and of the cube roots of the first 80 prime numbers].  

 

3 Security of SHA-384 and SHA-512 against known hash 
functions attack techniques 

3.1 Investigation of the applicability of Dobbertin's attack techniques 
 
The hash functions attack techniques introduced by H. Dobbertin in [DobMD4, DobMD5, 
DobRIPEMD] take opportunity of the extremely simple structure of  the message schedule of 
hash functions such as MD4, MD5 and RIPEMD. In such functions, the 16-words of the message 
block are just repeated in permuted order a certain number r of times : r = 3 in the case of MD4 
and RIPEMD, and r = 4 in the case of MD5.  As a consequence, it is trivial with such functions to 
create (M,M*) pairs of message blocks producing an extremely low weight difference pattern at 
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the output of the message schedule : if M and M* only differ in one bit of only one of their 16 
words, then there are only r differences, of weight only 1 each, at the output of the message 
schedule. 
 
Dobbertin's attacks are using such (M,M*) pairs of extremely low weight difference (e.g. weight 
1). The attack strategy consists in controlling the diffusion of the r resulting message schedule 
output  differences through the hash function computations, in order for the state registers 
differences caused by the r-1 message schedule differences encountered in the r-1 first 16-step 
rounds to be cancelled by the last message schedule difference encountered in the last 16-step 
round. Depending on the considered steps of the compression function, the control method may 
consist : 
• in differential techniques (one simply expects certain input differences to result in certain 

output differences at the output of  the state register update function)  
• or in more sophisticated equations solving techniques, allowing for instance to fix all the 

register values encountered in a small number k of consecutive steps of the computation as to 
allow a simple message schedule input difference, e.g. of weight 1, at the first of the k steps, to 
result in a prescribed difference value after k steps. 

Another example of the application of Dobbertin's techniques of [DobMD4, DobMD5, 
DobRIPEMD] to collision attacks can be found in [Debaert]. 
 
Due to the more complex and conservative expansion method used in the message schedules of 
the SHA family of hash function,  and in particular in the message schedule of SHA-384/512, 
Dobbertin's attacks do not seem applicable to these functions. More explicitly, the recurrence 
relation of the SHA-384/512  function (in particular the σ0(Wt-2 ) term in this recurrence) ensures 
a fast and strong diffusion of any low weight difference in the M message block, and prevents 
any (M,M*) pair of message blocks from resulting in a very low weight difference (e.g. 3, 4 or 5) 
at the message schedule expansion output.  
 

3.2 Investigation of the applicability of Chabaud and Joux's attack techniques 
 
Unlike Dobbertin's attack  Chabaud and Joux's attack of SHA-0 is entirely differential in nature. 
It takes advantage of the absence of any mixing of the various bit positions in the SHA-0 
message schedule expansion function -and of the GF(2) linearity of this expansion function- to 
construct relatively low weight differences on the W message schedule output3 which are likely 
to produce collisions on the SHA-0 compression function.   
 
Chabaud and Joux's  attack can be roughly summarised as follows. One first identifies "corrective 
patterns", i.e. sets of W difference bits positions allowing to cancel after a few rounds, with a 
sufficiently high probability the differences introduced in the SHA-0 state register by the 
introduction, in one of the W words say Wt) of a "perturbative pattern" consisting of a one-bit 
difference. Then low weight sequences of 1-bit "perturbative patterns" satisfying the recurrence 
of the SHA-0 message schedule (and some extra easy technical conditions) are identified. Due to 

                                                 
3 The relatively low difference weights encountered in this attack are higher by an order of magnitude than the 
extremely low difference weights considered in Dobbertin’s attacks. 
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the structure of the SHA-0 message schedule, the ∆W difference pattern resulting from the 
superposition of these various perturbative patterns and of all the corresponding corrective 
pattern automatically satisfies the linear recurrence of the message schedule. Therefore, 
numerous pairs of messages leading to the ∆W difference pattern are easy to construct and one of 
these pairs is likely to lead to a SHA-0 collision.  
 
Following this attack, we investigate whether differential collisions may be obtained on SHA--
384/512 faster than by exhaustive search. Using the differential properties of the non-linear 
functions shown in section 2.2, we approximate each addition by an exclusive or operation with 
probability ½, and the majority and choice functions by zero with probability ½. We proceed in 
three steps : 
 

• define a low weight perturbation and related corrective patterns 
• compute the associated probabilities 
• produce heuristic evidence that these patterns may not be generated according to the 

SHA-384/512 message schedule. 
 
 
• Obviously, in order to obtain a minimum weight difference, the best strategy is to inject a one 

bit difference in a given message word Wi, and for each consecutive round, to disable the 
propagation into the A register by appropriate corrective patterns of the next message words. 
We believe no other strategy can provide a sufficiently low weight perturbation pattern, 
hence an acceptable overall collision probability. The pattern has been obtained in a 
straightforward manner by setting the following equalities : let Wi be the word containing the 
perturbative one-bit difference. Then we define the next eight word differences by :  

 
Wi+1 = ∑1(Wi ) ⊕  ∑0(Wi) ; 
Wi+2 = ∑1(∑0(Wi)) ; 
Wi+3 = 0 ; 
Wi+4 = Wi ; 
Wi+5 = ∑1(Wi) ⊕  ∑0(Wi) ; 
Wi+6 = 0 ; 
Wi+7 = 0 ; 
Wi+8 = Wi; 
 
This leads to the propagation of minimum weight differences  in the 8 registers as shown 
in the following table : 
 

 
W A B C D E F G H 
1 1 0 0 0 1 0 0 0 
6 0 1 0 0 3 1 0 0 
9 0 0 1 0 0 3  1 0 
0 0 0 0 1 0 0 3 1 
1 0 0 0 0 1 0 0 3 
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6 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 1 
1 0 0 0 0 0 0 0 0 

 
 
 
Fact In other words, using corrective patterns with weight one, six and nine in the message 
words as shown in the W column of the above table gives rise to a basic differential collision 
pattern over 9 rounds. 

 
An explicit example of such a difference propagation on the 8 registers is given in Annex A. 

 
• The next step is to evaluate the probability of the preceding differential pattern. As we 

already mentioned, we approximate the addition operation by an exclusive or, and the non 
linear functions by zero. Two relevant additions occur in every round  per one bit difference 
in a message word : these are 
- The addition of T1 and the D register to form the new E register value ; 
- The addition of  T1 and T2 to form the new A register value. 
 
The probability of a carry bit appearing in one of these additions is bounded by ½ for each 
addition, thus we upper bound the overall probability for two additions per difference bit by 
¼ . There are a total of 1+6+9+1+6+1=24 difference bits over the 9-round pattern. Thus the 
probability over all additions is upper bounded by (2-24)2 = 2-48. 
 
As for the non linear choice and majority functions, the average probability to obtain a zero 
difference is ½ per difference bit. A total of 18 such difference bits occur in the non linear 
functions over the 9 rounds ; thus the overall associated probability is upper bounded by  2-18. 
 

Fact The overall probability associated to the 9-round differential collision pattern is upper 
bounded  by 2-66. 
 
 
 
• In the third and last step, we provide evidence that these patterns may not be concatenated (as 

is the case for SHA-0) so as to form message words that follow the correct message schedule.  
 
For SHA-384/512, suppose there is a block of 9 consecutive message words with differences 
defined as above (i.e. following the differential collision pattern). This block may not be 
followed by more than 7 pairs of identical message schedule output words. Let us show why : 
 
Recall that the simplified message schedule (i.e. where every addition has been replaced by 
an exclusive or) is defined by : 
 

Wt = σ1(Wt-2) ⊕  Wt-7 ⊕  σ0(Wt-15) ⊕  Wt-16 ; 

13 



      Then assuming that Wi to Wi+8 represent a differential collision pattern and that the to Wi+9 to 

Wi+15  differences are equal to zero, the difference in the 16-th message word is defined by : 

 Wi+16 =  σ1(Wi+14) ⊕  Wi+9 ⊕  σ0(Wi+1]) ⊕  Wi 

    = σ0(Wi+1) ⊕  Wi 

    = σ0(∑1(Wi) ⊕  ∑0(Wi)) ⊕  Wi 

    ≠ 0 for a 1-bit difference in Wi. 

 
Hence no more than 7 consecutive identical words may separate two consecutive differential 
collision patterns, with the original message block difference having at least one non-zero 
word. 
 
Hence, combining only up to four different patterns, we can cover at most 
15+9+7+9+7+9+7+9+7=79  difference message words while satisfying the message schedule 
recurrence. This shows that at least 5 different patterns have to be combined to follow the 
correct message schedule. 

 
Looking at the probabilities, if four of these patterns are applied, the the overall associated 
probability already becomes lower than the 2-256 thresehold corresponding to the 2256 
complexity of the natural birthday attack for SHA-512. 

 
Fact The overall probability associated to four 9-round differential collision patterns is upper 
bounded  by 2-264 which is far lower than the natural birthday attack bound. 
 
Conclusion : The original attack by Chabaud and Joux on SHA-0 does not extend to SHA--
384/512. 
 
 
 

4 Investigation of other dedicated attacks 

4.1 Differential attacks 

4.1.1 Link between differential properties and collision resistance 
 
In this section we investigate differential properties of the compression function. The idea behind 
this is that if it is possible to find any pseudo-collisions on the compression function of SHA-
384/512, then the Merkle-Damgard security argument cannot be applied. In other words, the 
existence of a pseudo-collision on the compression function of SHA-384/512 would represent an 
undesirable property. Furthermore, if multiple partial pseudo-collisions could be found on the 
compression function, this would help constructing a collision on the overall hash function. As a 
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matter of fact, if an exhaustive search is done over messages whose hash values already partially 
collide, the rest of the hash value collides with much higher probability than expected. 
 
Thus it makes sense to investigate the differential properties of the compression function. 
 
A special case for finding partial pseudo-collisions is to view the compression function as a block 
cipher encrypting registers A,B,C,D,E ,F,G, H under key [W0 … W64]. This has already been 
investigated for SHA-1 in [SHACAL]. No such partial collisions could be found. In the rest of 
Section 4.1, we investigate whether partial collisions of the same special form can be found for 
SHA-384/512.   
 

4. 1. 2  Search for low weight differential characteristics over a few rounds 
 
As in section 3.2, using the differential properties of the non-linear functions shown in section 
2.2, we approximate each addition by an exclusive or operation with probability ½, and the 
majority and choice functions by zero with probability ½. 
 
The following table shows the evolution of  the lowest weight differential characteristic over 4 
rounds we found. Only the weight of the difference in each register is shown, as a circular 
rotation of the corresponding indexes of the initial difference bits achieves the same overall 
propagation pattern. We stress that in this setting, all the message words are identical : only the 
input registers differ in a few bits. 
 
 
probability A B C D E F G H 

 0 0 0 0 1 0 0 3 
2-4 0 0 0 0 0 1 0 0 
½ 0 0 0 0 0 0 1 0 
½ 0 0 0 0 0 0  0 1 
¼  1 0 0 0 1 0 0 0 

 
 
• The first difference bit in register E affects both the Choice and the non-linear ∑1 function. 

With probability ½, the output of the ∑1 function is equal to zero, and with probability 2-3  the 
3 input difference bits in register H added to the 3 difference bits generated by the ∑1 function 
do not generate any difference carry bits. Thus after the first round, with probability 2-4  only 
one difference bit propagates in register F. 

• In rounds 2 and 3, with probability ½, this difference bit does not cause any difference in the 
output of the Choice function. Thus we now have a one-bit difference in register H. 

• In the last round of the characteristic, this one-bit difference is added respectively into 
register A and E, thus with probability ¼ ,the output difference is a 2-bit difference after 4 
rounds. 
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Putting everything together, this low weight differential characteristic  has a probability of  2-8 . 
 
Even though this characteristic does not concatenate over the whole 80 rounds, we can use it to 
compute conservative upper bounds and conclude that the best overall differential probability 
appears to be (much) lower than  2-8*20 = 2-160 . As opposed to the case of SHA-256, on SHA-512, 
this is not as low as the ‘natural’ thresehold equal to the inverse of the complexity of a birthday 
attack on a 512 bit or even a 384 bit hash value. However, it does not seem to us that that any 
global differential characteristic of probability close to this bound may be constructed by 
concatenating similar low weight characteristics. Having in mind that moreover finding 
differential characteristic would only represent an initial step toward finding pseudocollisions, 
and that one would actually need to find multiple partial collisions using this technique, we 
conclude that a standard differential attack on the compression function does not seem a 
promising approach. 
 

4. 1. 3  Search for iterative differential characteristics 
 
In order to complement the search for high probability differential characteristics of the         
SHA-384/512 round register update function presented above, we investigated iterative 
differential differential characteristics of non negligible probability on a reduced number of 
rounds. For that purpose we used the following approach : 
 
• We approximated the actual differential transitions associated with each round of the SHA-

384/512 register update function by a linear function of {0,1}512, by making the simplifying 
assumption  that the (δa', δb', δc', δd', δe', δf', δg', δh') output difference associated with a 
(δa, δb, δc, δd, δe, δf, δg, δh) input difference is equal the output difference one would obtain 
if in the SHA-384/512 function the Choice and Majority functions were ignored and if + was 
replaced by ⊕ . 

 
• Let us denote by L the 512 x 512 binary matrix over GF(2) representing the above linear 

mapping. Let us denote by A and E  the 64 x 64 matrices associated with Σ0,  and Σ1
 

respectively, and by I and O the identity and the null 64 x 64 matrices. L  can be described as 
a  a 8x8 block matrix : 
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L

A O
I O

O O
O O

E O
O O

O I
O O

O I
O O

O O
I O

O O
O O

O O
O O

O O
O O

O I
O O

E O
I O

O I
O O

O O
O O

O O
O O

O I
O O

O O
I O

=





























 

 
We are then using the L matrix to identify candidate iterative differential characteristics over a 
restricted number r of rounds.  For that purpose, we computed for each r value of [1,16] a basis of 
the Kr   kernel of Lr-I512 ,where I512 is the 512 x 512 identity matrix, using standard Gaussian 
reduction (see annex B).  The  δ=(δa, δb, δc, δd, δe, δf, δg, δh) elements of Kr represent these 
elements δ=(δa, δb, δc, δd, δe, δf, δg, δh) which stay invariant under r rounds (up to the 
approximation of the differential transition at each round by the linear function L). In other 
words, the  Kr elements represent iterative characteristics for r rounds, provided the probabilities 
obtained when taking into account the fact that L represents only an approximation (not the 
actual transitions) are not too low.  
 
As can be seen in the enumeration of  the Kr base vectors for the first values of r listed in Annex 
B, Kr elements are highly symmetric, i.e. they consist of δ = (δa, δb, δc, δd, δe, δf, δg, δh) values 
such that the δa to δh 64-bit patterns be periodic, of period 64 or 32, 16…, and therefore, any non 
zero element of such Kr sets contains at least some non zero periodic words and thus cannot have 
an extremely low weight. Therefore, we think that the approach described above does not provide 
high probability iterative differentials for SHA-384/512. 
 

4.2 Weakness in SHA-384/512 variants with too symmetric constant values 
 
In this Section we show that if some relatively slight variations  are made in the SHA-384/512 
specification, the resulting modified hash function does no longer offer any collision resistance. 
The considered variations essentially consisting in replacing all constants encountered in the 
algorithm by highly symmetric values. 
 
Let us denote by Ω  the set of all symmetric 64-bit words consisting of two equal 32-bit halves :  
Ω = {C ∈  {0,1}64  | ∃ c ∈  {0,1}32  C = c||c}  
 
 
Let us denote by MSHA  the SHA-384/512 variant obtained by replacing : 

• the H0
(0) to H7

(0)  words of the H(0) initial hash values by 064 or more generally by any 8 
constant 64-bit words belonging to Ω ; 
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• the K0 to K79 constants involved in the hash computation by 064 or more generally by any 80 
64-bit words belonging to Ω ; 

• the + operation (mod 264 addition) in the hash computation by ⊕  ; 
• the SHR7(x) shift operation of the σ0

 function by the ROTR7(x) circular shift operation ; 
• the SHR6(x) shift operation of the σ1

 function by the ROTR6(x) circular shift operation. 
 
It is easy to see that  if x,y ∈  Ω  then x ⊕  y ∈  Ω and that if x,y z ∈  Ω, then Ch(x,y,z) ∈  Ω and 
Maj(x,y,z) ∈  Ω, so that  if the H(i-1) and M(i) inputs to the msha compression function of MSHA 
both consist of Ω words, then the resulting H(i) output also consists of  Ω words. Consequently : 

 
• The complexity of collision search on the restriction of the msha compression function to 

input values belonging to Ω is only 2128 instead of 2256  (since for such values a collision on 
the left half of each output word implies a collision on the whole output word). 

 
• The complexity of collision search on the MSHA-384 and MSHA-512 hash functions is also 

upper bounded by 2128 (instead of 2192  in the case of SHA-384 and 2256  in the case of SHA-
512)  :  to construct such a collision, one can for instance first search two 1024-bit initial 
message blocks M1 and M'1 ∈  Ω16  such that msha(H0,M1) = msha(H0,M'1). The complexity 
for this msha collision search is 2128. Now given any binary suffix message of any length M2 
∈  {0,1}* , the  M = M1|| M2    and M' = M'1 || M2  messages provide a collision for the 384-bit 
or 512-bit output of the  MSHA hash function. 

 
The above attack can be easily generalised to MSHA’ ; MSHA”, etc. variants of MSHA in which 
all constants are selected in the Ω' = {C ∈  {0,1}64  | ∃ c ∈  {0,1}8  C = c||c||c||c},  Ω'' = {C ∈  
{0,1}64  | ∃ c ∈  {0,1}4  C = c||c||c||c||c||c||c||c},subsets (etc.) of Ω' instead of Ω. This results in 
collision attacks of complexity only 2128 for MSHA’,  264 for MSHA”, etc.  
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5 Conclusion 
 
We have investigated several directions on the security of SHA-384 and SHA-512. We have 
shown that neither Dobbertin’s nor Chabaud and Joux’s attacks on MD-type hash functions seem 
to transpose to SHA-384 or to SHA-512. Most features of the basic components of SHA-384/512 
seem to provide a better security level than for preceding hash functions, even though the relative 
number of rounds may seem somewhat lower than for SHA-1 for instance, and though the 
selection criteria and security arguments for some design choices are difficult to reconstruct from 
the mere specification, in the absence of any public design report. We have investigated 
differential properties of the underlying compression function and didn’t find any highly 
probable iterative characteristics, nor characteristics which extend to all rounds of the 
compression function. Finally, we have shown that a simplified version of SHA-384/512 where 
the round constants are halfwise symmetric is not secure.  
 
In light of these observations, we conclude that none of the currently known attack methods can 
be successfully applied to SHA-384 or SHA-512, and that we are not aware of any attack 
allowing to reduce the complexity of preimage or second preimage computations on SHA-384 
(respectively SHA-512) to substantially  less than 2384 (respectively 2512) or the complexity for 
collision and pseudo-collision search on SHA-384 (respectively SHA-512) to substantially less 
than the ‘natural’ birthday collision bound which is 2192 (respectively 2256).  
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ANNEX A  
 
 
The following values are an example of the consecutive contents of the differences in registers a, 
b, c, d, e, f, g, h when a « perturbative pattern » of Hamming weight one followed by the 
corresponding « corrective pattern » is applied to nine consecutive message words W. 
 
Values of the 9 consecutive differences in words W[0] to W[8] : 
 
W[0]: 0x20 0x 0   
W[1]: 0x50000000 0x880208   
W[2]: 0x8a31001 0x4200000   
W[3]: 0x 0 0x 0   
W[4]: 0x20 0x 0   
W[5]: 0x50000000 0x880208   
W[6]: 0x 0 0x 0   
W[7]: 0x 0 0x 0   
W[8]: 0x20 0x 0   
W[9]: 0x 0 0x 0   
 
 
Corresponding values of the 10 consecutive differences in registers A, B, C, 
D, E, F, G, H (represented by 2 32-bit halves ; registers separated by a .) 
 
Round 0 : 0x 0 0x 0 . 0x 0 0x 0 . 0x 0 0x 0 .  0x 0  0x 0 . 0x 0 0x 0 . 0x 0 
0x 0 . 0x 0 0x 0 . 0x 0  0x 0  
 
Round 1 : 0x20 0x 0 . 0x 0 0x 0 . 0x 0 0x 0 .  0x 0  0x 0 . 0x20 0x 0 . 0x 0 
0x 0 . 0x 0 0x 0 . 0x 0  0x 0  
 
Round 2 : 0x 0 0x 0 . 0x20 0x 0 . 0x 0 0x 0 .  0x 0  0x 0 . 0x40000000 0x208 . 
0x20 0x 0 . 0x 0 0x 0 . 0x 0  0x 0  
 
Round 3 : 0x 0 0x 0 . 0x 0 0x 0 . 0x20 0x 0 .  0x 0  0x 0 . 0x 0 0x 0 . 
0x40000000 0x208 . 0x20 0x 0 . 0x 0  0x 0  
 
Round 4 : 0x 0 0x 0 . 0x 0 0x 0 . 0x 0 0x 0 .  0x20  0x 0 . 0x 0 0x 0 . 0x 0 
0x 0 . 0x40000000 0x208 . 0x20  0x 0  
 
Round 5 : 0x 0 0x 0 . 0x 0 0x 0 . 0x 0 0x 0 .  0x 0  0x 0 . 0x20 0x 0 . 0x 0 
0x 0 . 0x 0 0x 0 . 0x40000000  0x208  
 
Round 6 : 0x 0 0x 0 . 0x 0 0x 0 . 0x 0 0x 0 .  0x 0  0x 0 . 0x 0 0x 0 . 0x20 
0x 0 . 0x 0 0x 0 . 0x 0  0x 0  
 
Round 7 : 0x 0 0x 0 . 0x 0 0x 0 . 0x 0 0x 0 .  0x 0  0x 0 . 0x 0 0x 0 . 0x 0 
0x 0 . 0x20 0x 0 . 0x 0  0x 0  
 
Round 8 : 0x 0 0x 0 . 0x 0 0x 0 . 0x 0 0x 0 .  0x 0  0x 0 . 0x 0 0x 0 . 0x 0 
0x 0 . 0x 0 0x 0 . 0x20  0x 0  
 
Round 9 : 0x 0 0x 0 . 0x 0 0x 0 . 0x 0 0x 0 .  0x 0  0x 0 . 0x 0 0x 0 . 0x 0 
0x 0 . 0x 0 0x 0 . 0x 0  0x 0  
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ANNEX B  
 

This annex describes vector bases for the Kr sets of candidate 512-bit difference values δ  = 
(δa, δb, δc, δd, δe, δf, δg, δh)  for iterative characteristics over r rounds, r being comprised 
between 1 and 8. It also provides the dimensions of the Kr sets for higher r values.   
We are using the following notational convention : for any binary word a, we denote by an the 
concatenation of n binary words equal to a. Thus for instance (0111)2 = 01110111, etc.  
 
K1 =  <e10, e11>  where   

• e10 = ((10)32 , (10)32 , (10)32 , (10)32 , (01)32 , (01)32 , (01)32 , (01)32 ) 
• e11 = ((01)32 , (01)32 , (01)32 , (01)32, (10)32 , (10)32 , (10)32 , (10)32  ) 

 
K2 =  <e20, e21, e22, e23>  where 

• e20 = ((10)32 , 032 , (10)32 , 032 , 032 , (01)32 , 032 , (01)32 ) 
• e21 = ((01)32 , 032 , (01)32 , 032 , 032 , (10)32 , 032 , (10)32 ) 
• e22 = (032 , (10)32 , 032 , (10)32, (01)32 , 032 , (01)32 , 032 ) 
• e23 = (032 , (01)32 , 032 , (01)32, (10)32 , 032 , (10)32 , 032) 

 
K3 =  <e10, e11> 
 
K4 = <e40, e41, e42, e43, e44, e45, e46, e47> where 

• e80 = ((0111)16, 064, (0010)16,064, 064, (1011)16, 064, (0001)16)    
• e81 = ((1110)16, 064, (0100)16,064, 064, (0111)16, 064, (0010)16)    
• e82 = ((1101)16, 064, (1000)16,064, 064, (1110)16, 064, (0100)16)    
• e83 = ((1011)16, 064, (0001)16,064, 064, (1101)16, 064, (1000)16)    
• e80 = (064, (0010)16,064, (0111)16, (1011)16, 064, (0001)16, 064)    
• e81 = (064, (0100)16,064, (1110)16, (0111)16, 064, (0010)16, 064)    
• e82 = (064, (1000)16,064, (1101)16, (1110)16, 064, (0100)16, 064)    
• e83 = (064, (0001)16,064, (1011)16, (1101)16, 064, (1000)16, 064)    

 
K5 =   <e10, e11> 
 
K6 =  <e20, e21, e22, e23> 
 
K7 =  <e70, e71, e72, e73, e74, e75, e76, e77> where 

• e70 = ((01)32 , (10)32 , 164 , 064 , 064, 064 , 064, 064, (01)32 ) 
• e71 = ((10)32 , (01)32 , 164 , 064 , 064, 064 , 064, 064, (10)32 ) 
• e72 = ((10)32 , 164 , 064 , 064 , 064, 064 , (01)32, 064 ) 
• e73 = ((01)32 , 164 , 064 , 064 , 064, 064 , (10)32, 064) 
• e74 = ((10)32 , (10)32 , 164 , (01)32 , 064, (01)32 , 064, 064) 
• e75 = ((01)32 , (01)32 , 164 , (10)32 , 064, (10)32 , 064, 064) 
• e76 = (164 , (01)32 , (10)32 , 164 , (01)32 , 064, 064, 064) 
• e77 = (164 , (10)32 , (01)32 , 164 , (10)32 , 064, 064, 064) 

23 



 
The dimensions of the next 9 vector spaces K8 to K16 are respectively 16, 2, 4, 2, 8, 2, 16, 2, 32.  
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