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1 Introduction

This document shows a complete description of the encryption algorithm Camellia, which is a secret
key cipher with 128-bit data block and 128/192/256-bit secret key.

2 Notations and Conventions

2.1 Radix

We use the prefix 0x to indicate hexadecimal numbers.

2.2 Notations
Throughout this document, the following notations are used.
e B denotes a vector space of 8-bit (byte) elements; that is, B := GF(2)8.
e W denotes a vector space of 32-bit (word) elements; that is, W := B*.
e L denotes a vector space of 64-bit (double word) elements; that is, L := BS.

Q denotes a vector space of 128-bit (quad word) elements; that is, Q := B'6.

An element with the suffix (,,) (e.g. 7(,)) shows that the element is n-bit long.
e An element with the suffix ;, (e.g. 1) denotes left-half part of x.

e An element with the suffix p (e.g. xr) denotes right-half part of x.

The suffix (,,) will be omitted if no ambiguity is expected. See section 2.4 for numerical examples
of “left” and “right”.

2.3 List of Symbols

@®  The bitwise exclusive-OR operation.
|| The concatenation of the two operands.
K, The left circular rotation of the operand by n bits.
N The bitwise AND operation.
U  The bitwise OR operation.
T  The bitwise complement of z.

2.4 Bit/Byte Ordering

We adopt big endian ordering. The following example shows how to compose a 128-bit value Q(;23)
of two 64-bit values L;gsy (i = 1,2), four 32-bit values Wysy) (i = 1,2,3,4), sixteen 8-bit values
By (1 =1,2,...,16), or 128 1-bit values Ej) (i = 1,2,...,128), respectively.
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Q(128) = L1(64) ||L2(64)
= W1(32) ||W2(32) | |W3(32) | |W4(32)
= Bi)l|Bas)|Bses)l|Bagsyll - - - - - ||B13(8) || Biacs) || Bis(s) || Bie s)
= EyllEx | Es)[|Bayll oo ooevvviaoet || Ev2s(1) || Er26(1) [| Evar(1) || Er2s(1)

Numerical examples:

Qu2sy = 0x0123456789ABCDEF0011223344556677,125)

Ligsy = Quesy = O0x0123456789ABCDEF gy

Loy = Qnpesy = 0x0011223344556677 ()

Wisz = Lipay = 0x01234567(3

Wy = Lipaz) =  Ox89ABCDEF (s

Wasay = Lons 0%0011223339)

Wiy = Loggs) =  0x44556677(3:

Bl(g) = OXOl(g), B2(8) = OX23(8), B3(8) = 0X45(8), B4(8) = 0X67(8),

Bs(s) = 0x89s), Bs(s) = O0xABg), Brs) = 0xCD(), By(s) = OxEF(y,

Bg(g) = OXOO(S), Blo(g) = Oxll(g), Bn(g) = 0X22(8), B12(8) = 0X33(8),

Bissy = Ox44s), Buws = O0x55s), Bisw) = O0x66(s), Bigs = O0x77(s),

Eiqy = O, By = Oy, By = O, Eyqy = Oq),

Esqy = Oq, Eeay = Ow, Ery = Oy, Esqy = 1la),

Ei511y = 0@, Ei2201y = 1), Eia31y = 1), Eiay = 1y,

Eia501y = Oq, Eis61y = 1), Eiary = 1), Eis(1y = 1.
Quasy<1 = Eyl|Bsyl|Eacyl|EBsyl---vvveeieiiiin [1E12501) | Er26(1) || Er27 (1) || Br2s ) || 1)

0x02468ACF13579BDE0022446688AACCEE | 54)



Copyright NTT and Mitsubishi Electric Corporation 2000-2001

3 Structure of Camellia

3.1 List of Functions and Variables

M 123)
Cl128)
K

kwyeays Ku(ea)s Kluea)

3.2 Encryption Procedure

3.2.1 128-bit key

Figure 1 shows the encryption procedure for a 128-bit key. The data randomizing part has an
18-round Feistel structure with two F'L/F L~'-function layers after the 6-th and 12-th rounds, and
128-bit XOR operations before the first round and after the last round. The key schedule part
generates subkeys kwygq) (t = 1,2,3,4), kyeay (v =1,2,...,18) and kly@qy (v = 1,2,3,4) from the

The plaintext block.
The ciphertext block.
The secret key, whose length is 128, 192, or 256 bits.

The subkeys.

(t=1,2,3,4) (u=1,2,...,18) (v=1,2,3,4)
for 128-bit secret key.

(t=1,2,3,4) (u=1,2,...,24) (v=1,2,...,6)
for 192-bit and 256-bit secret key.

The F-function that transforms a 64-bit input Xgq) to a
64-bit output Y(g4) using a 64-bit subkey k(gq4).

The FL-function that transforms a 64-bit input X4 to a
64-bit output Y(g4) using a 64-bit subkey k(gq4)-

The FL~'-function that transforms a 64-bit input X (64) tO
a 64-bit output Y(g4) using a 64-bit subkey kgq).

The S-function that transforms a 64-bit input Xgq to a
64-bit output Y{g4)-

The P-function that transforms a 64-bit input Xg4) to a
64-bit output Y{g4).

The s-boxes that transform an 8-bit input to an 8-bit output
(1=1,2,3,4).

secret key K; see section 3.4 for details of the key schedule part.

In the data randomizing part, first the plaintext M 95y is XORed with kwg4)||kwy(ss) and
separated into Lg(gs) and Rygqy of equal length, i.e., M(jog) © (kwy(gayllkwaeay) = Loea)!|Rogea)-

Then, the following operations are perfomed from r =1 to 18, except for » = 6 and 12;

L, = erl@F(erlakr)a
R, = L, 1.
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For » = 6 and 12, the following is carried out;

L; = erl D F(erla kr)a
R;. = LT*I,

L, = FL(Ly kly 1),
Rr = FL_I(R;«akl%/G)'

Lastly, Rig) and Lig(gs) are concatenated and XORed with kw3(64)||kw4(64). The resultant
value is the ciphertext, i.e., C198) = (Rig(64)||L18(64)) D (Fws(eay||kwaes))-

3.2.2 192-bit and 256-bit key

Figure 2 shows the encryption procedure for a 192-bit or 256-bit key. The data randomizing part
has a 24-round Feistel structure with three FL/FL~!-function layers after the 6-th, 12-th, and
18-th rounds, and 128-bit XOR operations before the first round and after the last round. The
key schedule part generates subkeys kwyes) (t = 1,2,3,4), kyesy (v = 1,2,...,24), and kly4)
(v=1,2,...,6) from the secret key K.

In the data randomizing part, first the plaintext Mgy is XORed with kw(gs)||kwoss) and
separated into Lo(ss) and Roggs) of equal length, i.e., M(jog) © (kwi(eayllkwa(eay) = Losa)l|Ro(es)-
Then, perform the following operations from r = 1 to 24, except for r = 6, 12, and 18;

LT‘ = Rr_l@F(Lr—lakr)a
Rr = L?‘—l-

For r = 6, 12, and 18, perform the following;

L; = R1® F(Lr—la kr)a
R;‘ = L?‘—la
LT‘ = FL(L;'" kl?r/G—l)a
R, = FLil(R;,, kl2r/6)'
Lastly, Rose4) and Loyes) are concatenated and XORed with kwsea)||kwy(esy- The resultant

value is the ciphertext, i.e., C(128) = (Raa(64) | L2a(64)) © (kws(ea)l[kwacea))-
See section 4 for details of the F-function and FL/FL™!-functions.

3.3 Decryption Procedure

3.3.1 128-bit key

The decryption procedure of Camellia can be done in the same way as the encryption procedure
by reversing the order of the subkeys.
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Figure 3 shows the decryption procedure for a 128-bit key. The data randomizing part has an
18-round Feistel structure with two F'L/FL~!-function layers after the 6-th and 12-th rounds, and
128-bit XOR operations before the first round and after the last round. The key schedule part
generates subkeys kwyes) (t = 1,2,3,4), kyea) (v = 1,2,...,18), and klyey (v = 1,2,3,4) from
the secret key K; see section 3.4 for details of the key schedule part.

In the data randomizing part, first the ciphertext Cj5) is XORed with kwsgs)||kwy(esy and
separated into Rygsy and Ligeq) of equal length, i.e., C(1ag) © (kws(ga)||kwa(eay) = Riseea)l|Lis(ea)-
Then, the following operations are perfomed from r = 18 down to 1, except for r = 13 and 7;

Rr—l = Lr @F(Rrakr)a
L.y = R,

For r = 13 and 7, the following is carried out;
' = L, ®F(Rrky),
;"—1 = R,.
R,1 = FL(R;"—D kl?(r—l)/(j)a
Loy = FL MLy, klyp_1y/s-1)-

Lastly, Logs) and Ry(es) are concatenated and XORed with kwygs)||kwa(gs). The resultant
value is the plaintext, i.e., M(128) = (L0(64)||R0(64)) ©® (kw1(64)||kw2(64)).

3.3.2 192-bit and 256-bit key

Figure 4 shows the decryption procedure for a 192-bit or 256-bit key. The data randomizing part
has a 24-round Feistel structure with three FL/FL~!-function layers after the 6-th, 12-th, and
18-th rounds, and 128-bit XOR operations before the first round and after the last round. The
key schedule part generates subkeys kwyes) (t = 1,2,3,4), kyes)y (v = 1,2,...,24), and kly 4
(v=1,2,...,6) from the secret key K.

In the data randomizing part, first the ciphertext C 5y is XORed with kwsgs)||kwy(es)y and
separated into Royesy and Layes) of equal length, i.e., C(1a8) © (kws(sa)||kwa(sa)) = Raagea)l|Loa(es)-
Then, perform the following operations from r = 24 down to 1, except for »r = 19, 13, and 7;

Rr—1 = LT@F(R,«,k‘,«),
L1 = R,.

For r =19, 13, and 7, perform the following.
;—1 = LT@F(Rrakr)a
;"—1 = R,.
R, = FL(RLU klZ(rfl)/ﬁ)a
L,y = FL?I(Lg‘fla klZ(rfl)/ﬁfl)'

Lastly, Logsy and Ryesy are concatenated and XORed with kwygg)|[kwa(ss). The resultant
value iS the plaintext, i.e., M(128) = (L0(64)||R0(64)) ) (kw1(64)||kw2(64)).
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3.4 Key Schedule

In the key schedule part of Camellia, we introduce two 128-bit variables K195y, Kp(12g) and four
64-bit variables Krr64), KrRr(64): KRrL(64) and Kgp(ea), Which are defined so that the following
relations are satisfied:

Kaasy = Kpazs)s Kpa2s) = 0 for 128-bit key,
K(192) = KL(128) | |KRL(64)a KRR(64) = KRL(64); for 192-bit key,
Kossy = Kraos)llKraos); for 256-bit key.
Kraes)y = KrneallKrres),

for any size of key.
Krazsy = KrienllKrresa);

Using these variables, we generate two 128-bit variables K 125y and Kp12g), as shown in
figure 8, where Kp(jog) is used only if the length of the secret key is 192 or 256 bits. First
K = Kp128) 1s XORed with Kp(198) and “encrypted” by two rounds using the constant values
Yi(64) and Yy(e4) as “keys”. The result is XORed with K195y and again encrypted by two rounds
using the constant values Y354y and Xy(g4); the resultant value is K y(12g). Lastly K 4(125) is XORed
with Kr(12g) and encrypted by two rounds using the constant values X554y and YXgg4); the resultant
value is Kp(1a8). X is defined as the continuous values from the second hexadecimal place to the
seventeenth hexadecimal place of the hexadecimal representation of the square root of the i-th
prime. These constant values are listed in table 1.

The subkeys kwy g4y, ku(64), and kly(g4) are generated from (left-half or right-half part of) rotate
shifted values of K128y, Kr(128), K (128), and Kp(j2g8). The exact details are shown in table 2 and
table 3, respectively.

Therefore by setting Krpes) = Kpr(64), the 256-bit version is compatible with the 192-bit
version.

Table 1: The key schedule constants

Si(64) | 0xAO9E667F3BCCO08B
Sa(a) | 0xB6TAES584CAAT3B2
S3(61) | OXCEEF372FE94F82BE
Si(61) | 0x54FF53A5F1D36F1C
Ss(64) | 0x10E527FADE682D1D
So(61) | 0xBO5688C2B3E6CLFD
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Table 2: Subkeys for 128-bit secret key Table 3: Subkeys for 192/256-bit secret key

| | subkey | value | | | subkey | value |
Prewhitening | kwqe4) | (K7, <0) L (64) Prewhitening | kwy(es) | (K1<0)1(64)
kwyea) | (K1 <0) R64) kwyes) | (K1 <o) R(s4)
F (Roundl) kiea) | (Ka<o)L(ea) F (Roundl) kiea) | (KB<Ko0)L(64)
F (Round?) k2(64) (KA <<<0) R(64) F (Round2) k2(64) (KB <<<()) R(64)
F (Round3) k3(64) (KL<<<15)L(64) F (Round3) k‘3(64) (KR<<<15)L(64)
F (Round4) k4(64) (KL<<<15)R(64) F (Round4) k‘4(64) (KR<<<15)R(64
F (Round5) k5(64) (KA<<<15)L(64) F (Round5) k5(64) (KA<<<15) L(64)
F (Round6) koea) | (Ka<<15)R(64) F (Round6) kees) | (Ka<<15)R(64)
FL kliea) | (Ka<<30)L(64) FL kliesy | (KR<30)L(64)
FL! klaea) | (Ka<K30)R(64) FL! klaes) | (KrR<30)R(64)
F (Round?7) kreay | (K1 <Ka5)1(64) F (Round7) krea) | (KB<K30)L(64)
F (Rounds) kseay | (K1<K45)R(64) F' (Rounds) ksea) | (KB<K30)R(64)
F (Roundg) k9(64) (KA <<<45)L(64) F (Roundg) k'g(64) (KL <<<45)L(6
F (Round10) | kigsay | (K1 <<60)R(s4) F (Round10) | kioesy | (K1 <<45)R(s0)
F (Round11) | Kiiges) | (Ka<<60)L(64) F (Roundll) | kiyes) | (Ka<<as)r(64)
F (Round12) k12(64) (KA<<<60)R(64) F' (Round12) k12(64) (Ka <<<45)R(6
FL klseay | (KL <<77)1(64) FL kl3esy | (KL <60)L(64)
FL! klyes)y | (KL <<77) Ri64) FL! klyes) | (K1 <<60)R(64)
F (Round13) | kiges) | (K1 <o4)1(64) F (Round13) | kizes) | (KrR<60)L(64)
F (Round14) | kiyes) | (K1 <K94)R(64) F (Round14) | kises) | (KR<60)R(64)
F (Round15) k15(64) (KA<<<94)L(64) F (Round15) k15(64) (KB <<<60)L(64)
F (Round16) k16(64) (KA<<<94)R(64) F (Round16) k16(64) (KB <<<60)R(64)
F (Round17) k17(64) (Kr<in)g L(64) F' (Round17) k17(64) (Kr, <<<77)L(6
F (Round18) k18(64) (KL K111 )R(64) F (RoundlS) k‘lg(64) (KL <<<77)R(6
Postwhitening | kwsga) | (Ka<111)1(64) FL klsea) | (Ka<<r7)L(64)
kwyes) | (Ka<€i11)R(64) FL™! klgea) | (Ka<<77)R(64)
F (Round19) | kiges) | (KrR<K04)1(64)
F (Round20) k20(64) (KR<<<94)R(6
F (Round21) | kai(ea) | (Ka <<<94)L(64)
F (Round22) k22(64) (Ka <<<94) R(64)
F (Round23) | kyses) | (K1 <€111)1(64)
F (Round24) | kyyee) | (K <111)R(64)
Postwhitening | kwses) | (Kp<111)1(64)
kwyes) | (Kp<i11)R(6a)
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4 Components of Camellia

4.1 F-function

The F-function is shown in figure 5, which is defined as follows:

F:LxL — L
(X(64), k6a)) > Yiea) = P(S(X(6a) © K6a)))-

See sections 4.4 and 4.6 for the S-function and the P-function, respectively.

4.2 F L-function

The F L-function is shown in figure 6, which is defined as follows:

FL:LxL — L
(X2 [ XRr(32), klrs2)lklra2) = Yie)lYreE),

where

Yriazy = (Xp2) Nklpse) <) © Xps2),
Yiise)y = (Yrea) Uklrasz) © Xis2)-

4.3 F L '-function

The FL~!-function is shown in figure 7, which is defined as follows:

FL'':LxL — L
(Yo2)[[Yre2)s Klro) [kl r@a2)) —— Xpeo)l|Xre2)

where

Xr@2)y = (Yrz) Uklps2)) © Yis),
Xp@2)y = (Xpa2) Nklps))<1) @ Yr(sz)-

4.4 S-function

The S-function is a part of F-function, which is defined as follows:

S:L — L

Ligeylllags) 1aes) 1las) 1ss) ey ey lllssy = Tis) 1l sy sy 15y sy 1178 s )

10
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lll(s) = 51(11(8)),
llz(s) = 52(12(8)),
l3s) 53(l3(8)),
lis) sa(ly(g)),
ll5(8) 32(15(8)),
l(s) s3(ls(s)),
7(s) sa(lz(s))s
lssy = s1(ls(s))s

where the four s-boxes, s1, s2, 3, and s4, are described in section 4.5.

4.5 s-boxes

The four s-boxes of Camellia are affine equivalent to an inversion function over GF(2%), which are
shown in tables 4, 5, 6, and 7. An algebraic representation of the s-boxes is shown below:

S1 : B—B
r@g) +—— h(g(f(0xch ® w(y)))) © 0x6e,
59 : B—B

Ty > si1(ze) <K,
S3 : B—B

rg) > si1(ze))S>,
S4 : B—B

riy > s1(re) <),

where the functions f, g, and h are given as follows:

f:B—B

a1y llazqy las llaac llasllasllazyllasq)
— b1y l[baa ||b3 ||b4 ||b5 yb6(1)l1b7(1 ||bs

where

b1 = ag © ag,
by = a7 ® ay,
bs = ag P as D ag,
by = ag © as,
bs = a7 © ay,
bg = as D aog,
br = ag ® a,
bs = ag D aq.
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g:B—B

ar) llaz) llas llaa llasllaswllazq)llasq,
== by l1ban) 1031y |1ba(1) [1b5 (1) b6 1) 11072 IIbs

where

(bs + bra + bsa? + ba®) + (by + by + ba® + bra®)3
= 1/((ag + ara + as0® + a50”) + (a4 + a3 + aza® + a,0%)3).

This inversion is performed in GF(2%) assuming § = 0, where 3 is an element in GF(28) that
satisfies 3% + 3+ 3° + 33 +1 =0, and a = %8 = 35 + 35 + 3% 4 3% is an element in GF(2*) that
satisfies o + a +1 = 0.

h:B—B

a1y llazqy llas llaac llasllasllazyllasq)
— b1y |[baa ||b3 ||b4 ||b5 yb6(1)l1b7(1 ||bs

where

b1 =as D ag ® ag,
by = ag © ag,
by = a7 © ay,
by = ag © ag,
bs = a7 P agz,
bg = ag ® ay,
br = a5 ® ay,

bg = ag O as.
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112
35
134
166
139
223
20
254
170
16
135
82
233
120
114
64

224
70
13
7
23

191
40

253
85
32
15

164

211

240

228

128

Table 4: The s-box s;

This table below reads s1(0) = 112, s1(1) = 130,

130
239
184
225
13
76
88
68
208
196
92
1565
121
152

40

223
113
195
26
1562
176
136
161
137
184
55
242
49
14
80

44
107
175

57
154
203

58
207
160

0
131
216
167

6
185
211

88
214
95
114
53
151
116
159
65

177
79
12

115

167

236
147
143
202
102
194
97
178
125
72
2
38
140
106
85
123

217
39
31

149

204

133

194

101

250

144

76
25
212
170
246

179

69
124
213
251

52
222
195
161
163
205
200
159
231
248
187

103
138
248
171
247
104
189
135

67

71
155
145

63
207
241
119

39
25
235
71
204
126
27
181
137
247
74
55
110
70
238
201

78

50
215
142
153
252

54
107

19
239
148
110
220
140
221
147

192
165
31
93
176
118
17
122
98
117
144
198
188
113
172
67

Table 5: The s-box s9

129
75
62

186
97

236
34

244

196

234
33

141

121

226
89

134

229
33
206
61
45
5
28
145
151
219
51
59
142
186
10
193

203
66
157
122
90
10
56
35
47
183
102
118
29
117
20
131

228
237
62
217
116
109
50
36
84
138
115
129
41
212
54
21

201
219
124
179
232
218
100
72
168
21
230
3
82
169
108
42

133
14
48
1
18
183
15
8
91
3

103

150

245
37
73

227

11
28
96
2
36
111
30
16
182

206
45
235
74
146
199

87
79
220
90
43
169
156
232
30
230
246
111
249
171
42
173

174
158
185
180
86
83
57
209
60
205
237
222
243
87
84
91

..., 51(255) = 158.

53
78
95
214
32
49
22
168
149
218
243
75
182
66
104
244

106
156
190
173
64
98
44
81
43
181
231
150
109
132
208
233

234
29
94
81

240

209
83
96

224

1567
19
47

136
60

119

213
58
188
162
225
163
166
192
193
18
59
38
94
17
120
238

12
101
197

86
177

23

24
252
255

63
127
190
253
162

56
199

24
202
139
172

99

46

48
249
255
126
254
125
251

69
112
143

174
146
11
108
132
4
242
105
100
221
191
99
180
141
241
128

93
37
22
216

229
210
200
187
127
198
105
27
227
1

65
189
26
7
153
215
34
80
210
148
226
46
89
250
164
158

130
123
52
154
51
175
68
160
165
41
197
92
178
245
73
61

13
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56
145
67
83
197
239
10
127
85

195
41
244
60
57
32

112
134
139

20
170
135
233
114
130
184

13

88
208

92
121

65
247
92
240
134
38
44
34
104
98
46
205
188
76
131
20

44
175
154

58
160
131
167
185
236
143
102

o7
125

140
85

22
181
215
156

7
229

29
231

80

193
108
211

220
233

179
124
251
222
161
205
159
248

39
235
204

27
137

74
110
238

118
201
199
101
51
97
176
89
190
36

19
70
53
170
189

192
31
176
17
98
144
188
172
229
206
45
28
151
51
142
10

217
162

62
234
253

26
111
225
208
209
230
100
207
243
124
221

228
62
116
50
84
115
41
54
133
48
18
15
91
103
245
73

147
140
245
163
102

63
141
218
196
251

37
155

55

35
119
228

87
220
43
156
30
246
249
42
53
95
32
22
149
243
182
104

Table 6: The s-box s3

96
210
143
174

88

59
136

61

49
186

72

99

94
184

86
161

Table

234
94
240
83
224
157
47
60
12
197
177
24
255
127
253
56

242
144
103
158
150
130
14
200
203
237
153
157
71
93
5
224

7: The s-box s4

174
11
132
242
100
191
180
241
65
26
153
34
210
226
89
164

114
246
31
236
58
182
25
18
42
69
185
192
148
106
27
138

35
166
223
254

16

82
120

64
239
225

76

68
196
155
152

40

194
7
24
128

219
135

173
129
179

75
250
146
164
241

107
57
203
207
0
216
6
211
147
202
194
178
72
38
106
123

171
167
110

45
149
212

78
116

15
115
123
183
252
213

21
214

69
213
52
195
163
200
231
187
25
71
126
181
247
55
70
201

154
39
175
107
16
1562
11
84
202
109
249
165
91
33
52
122

165
93
118
122
117
198
113
67
33
61

145
219

59
186
193

117
142

47
168
120
232
169

48
112
132
206
137
151

68

30
187

237
217
109
36
138
129
212
21
14

183

150

37
227

178
226
43
216
139
12
126
255
159
191
95
254
81
28
227

79
90
169
232
230
111
171
173
78
214
49
168
218
75
66
244

87
73
133
54
66

121
180

50
238
223
177

90
198
248

64

29
81
209
96

19
136
119
101

86

23
252

63
190
162
199

160
222
13
166
204
235
17
40
105
74
113
23
172
125
82
79

146
108

105
221
99
141
128
189
7
215
80
148
46
250
158

14
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4.6 P-function

The P-function is a part of F-function, which is defined as follows:

P:L — L
zi(s) |12a8) [12308) [12a(8) | 12508) | 268y [127(8) [128(8) = 2108yl 12208y 1238y | 128y 125 8) 11268y 11 278y | 128y

where

=21 D23 D2 Dz D27 D 2,
2 =121 D22 D24 D25 D27 D 23,
zg:zl@zg@z;:,@zg,@zf;@zs,
2y = 20D 23D 24 D 25 D 26 D 27,
2y = 21 D 20 D 26 D 27 D 23,
26 = 22 D 23 D 25 D 27 D 23,
2,7223@24@25@26@28,

zg:zl@z4@Z5@z6@Z7.

Equivalently, this transformation can be given in the following form:

28 2% 28
27 2% 27

=X
[N
=

<1

where

B P, 2, O P = O
, kO P P O
P O, P P O P BB
O, P Pk OFr - -
kO PP, OO - -
P O R, P, O RFr = O
O, Pk P, P, P, OO
B P, P, Ok O O -
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A Figures of the Camellia Algorithm

M(128)

kw5 — KWy

Loa) Roea)

Ki(ea), Ka(ea), Kaes),
Kaea), Ks(ea), Ke(ea)

6-Round
L.

Kyes— FL

k7(64), Kaea), Ko(ea),

Kio(64), K11(64), K12(64) 6-Round

K13(64), K14(64), K1s(64),

Kie(64), K17(64), K18(64)

6-Round
L.

L1sea) Rug(es)

kW) — kW e

C(128)

64)

K2ea)

64)

Ko

64)

64)

Logea)

L 2e4)

L 464)

I-564

Figure 1: Encryption Procedure of Camellia for 128-bit key
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M(128)
Koy — — Ko
Loes) Roes) ‘
k k k:
1(64), "2(64), "3(64), ) I‘Q(6_4L
k4(64), I‘5(64), k6(64) 6-Round 1(64)
L.
L
| | kz(M)M
Mo Pt ] [P Kaey
)
K o264 |
k7(64), Ke(e4), Ko(ea), 3(64)
k k k
10064, T1(69), T12(64) 6-Round L
Latea) |
| |
Kaear—] L || i [ K
K13(64), K1a(ea), K15(64), '
Kie(64), K17(64) K18(62) & Round
|

Kiseny 1 _FL | |

Kig(e4), Kao(64), K21(64),

Kao(e4), Koz(ea), K24(64)

6-Round
L 24(e4) Roae4)
kW3(64) . «— kw (64)
Clwg)

Figure 2: Encryption Procedure of Camellia for 192-bit and 256-bit key
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Caog)
kw3(64) - P— kW4(64)
Rise) L 16(64)
k k k
18(64), 17(64), "16(64), . RML
Kis(64), Kuagea), K13(64) 6 Round 18(64)
L.
R
| i kﬂ(@)w
Kla(eay—1 FIL | FIL'1 F— Kzeq)
.
k *16(64) |
I(12(64), I‘11(64), k10(64), 16(64)
Ko(ea), Ka(e4), K7(6) 6-Round
R
Kasgea 2
Kaey — it | i — kI
264 i 1(64 R
(64) I I ( B LTCT
I‘6(64), I‘5(64), k4(64), ;
Kae, Koo, K1ea) .
L 6-Round Ko \13(64) |
Ross) Loea)
Ko — ke
M(128)

Figure 3: Decryption Procedure of Camellia for 128-bit key
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Cazs)
kW3(64)4' b— kW4(64)
Roaea) L 2a(6a)
k k k
24(64), X 23(64), K 22(64), | ™
k21(64), I‘20(64), k19(64) 6-Round 24(64)
L.
R L
k23(64)§6_4L 23(64)
| [
K 569 — FIL | Fl'—’l F Kl 5(62) . )
Koo 22(64) | 22(64)
I(18(64), I‘17(64), k16(64), 22(64)
Kisea), Kiagea), K13(64) 6-Round L
R
kzl(M)M 21(64)
| | . . ]
Ko — FIL | F|L — Maen | Kaoee 2] 2064)
K12(64), K 11(64) K10(62),
k k k R L
a(64), Ke(ea), K7(64) 6-Round PN 560
| |
Ko~ FIL | ':l'-'l [ Ky
Ke(o4), Ks(ea), Kaea),
Kaea), Kaea), K169 | 6-round
Roe4) Logea
Koy Ky
M128)

Figure 4: Decryption Procedure of Camellia for 192-bit and 256-bit key
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Figure 6: F L-function

Figure 7: FL !-function

Ki (64)
Xeg _(|Vs o128 an any
N LS N NP
Xoe) (Y1 512 ) )
N I NP NP
Xe@ X |Ye 126 ) )
N LS5 N N
X V4
*® %L@ ° P P
X V4
o _qierste L &
X zZ
® H@#yi@ : D <D
Xog Yo rs122 | Jany
N LS N NP
Xug X V1 re1Z JanY
N LS N
__/
S-Function P-Function
Figure 5: F-function
X(64) Yies)
XL(32) l XR(32) YL(32) YRr@32)
Kl L32) I K rea)
‘A\—<<< 19 =4
T Kire K L32)
o —gw—<<< 179
Y32 l YR(32) Ai(32) l XR(32)
Yiea) X (64
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Ki2s) © KRrezg)

2 1(64) 1
— F o
e

2 2(64) |
—{ F ¢

K L(128)—>9

23(64) |
— F o
e

a1}
— F o

)

\ 4

K a(128)

KRre128)
[ 25(64)
— F ¢
e
I 2.6(64)
— F ¢
Kg(128)

Figure 8: Key Schedule
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B Test Data

The following is test data for Camellia in hexadecimal form:

128-bit key

key 01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 10
plaintext 01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 10
ciphertext 67 67 31 38 54 96 69 73 08 57 06 56 48 ea be 43

192-bit key

key 01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 10
00 11 22 33 44 55 66 77

plaintext 01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 10

ciphertext b4 99 34 01 b3 €9 96 f8 4e eb ce e7 d7 9b 09 b9

256-bit key

key 01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 10

00 11 22 33 44 55 66 77 88 99 aa bb cc dd ee ff
plaintext 01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 10
ciphertext 9a cc 23 7d ff 16 d7 6¢ 20 ef 7c 91 9e 3a 75 09

C Software Implementation Techniques

This section describes how to implement Camellia efficiently in software. In most cases, an imple-
mentation can be divided into two parts: setup including key schedule and data randomization, that
is, encryption or decryption. We first describe how to optimize the setup code, and then describe
how to optimize the data randomization code.

This section describes specific techniques for 8-, 32-, or 64-bit processors. However, a tech-
nique for 8-bit processors may be applicable to 32- or 64-bit processors and a technique for 32-bit
processors may be applicable to 64-bit processors. Other word sizes may need to be considered.

We assume that you first implement Camellia using the specification as it is. This section will
optimize the resulting code.

Note that in this section “word” means the natural size of the target processor. For example,
the words of TA-32 without MMX technology, IA-32 with MMX technology and Alpha are 32-, 64-,
and 64-bits long respectively.

C.1 Setup
C.1.1 Store All Subkeys

Store all subkeys into memory once you generate them if you have sufficient memory, and use the
stored subkeys for data randomization.



Copyright NTT and Mitsubishi Electric Corporation 2000-2001 23

C.1.2 Subkey Generation Order

You do not have to compute subkeys in order. For example, when you compute subkeys for a
128-bit key, first compute the subkeys that only depend on K, and then compute subkeys that
only depend on K 4. You can save registers or memory for storing K 4.

C.1.3 XOR Cancellation Property in Key Schedule

The key schedule of Camellia is based on the Feistel structure. Between the 2nd round and the 3rd
round, K7, is XORed to an intermediate value. This structure causes cancellations of Kj. More
precisely, the input of the 3rd round can be computed by the following equations.

left half) = F(Krgr @ (right half), ¥9)

right half) = F(KLL, 21)

left half) Krr @ F(Kpr ® (right half), ¥,)
I‘ight half) KRR@F(KLL @KRLaEI)

for 128-bit keys

for 192- and 256-bit keys

Py

Using the above equations, we can eliminate 3 and 2 XORs in L for 128- and 192/256-bit keys,
respectively, compared to the straightforward implementation of the specification.

C.1.4 Rotation Bits for Kj, Kp, K, and Kp

You do not need to keep K, Kr, K4, and Kp, but you should keep their rotated values when
generating subkeys. You can generate subkeys by rotating the kept values by integral multiples of
16 £ 1 bits.

C.1.5 kls and klg generation from k17 and ko

For 192- and 256- bit keys, you can use a word-oriented rotation to generate (kls, klg) from (kq1, k12),
since (kls, klg) equals (k11, k12)<32. This saves a few instructions compared to general rotation.
C.1.6 On-the-fly Subkey Generation

You can generate subkeys on-the-fly. All subkeys are one of the rotated values of K7, Kr, K4,
and Kp. Thus, you first generate K, Kr, K4, and Kp, and then rotate them to get the subkeys.
Refer Section C.1.4 for the rotated numbers of bits for K, Kr, K4, and Kp.

C.1.7 128-bit key and 192/256-bit key
If your code does not need to use larger key sizes than 128 bits, you do not need to generate Kp.
That is, you can omit the computations for the last two F-functions.

C.1.8 How to Rotate an Element in Q

8-bit processor. As stated in Section C.1.4, the rotation bits are integral multiples of 16 4 1.
Thus, you can rotate an element in Q by 16 £ 1 bits by rotating 1-bit left or right followed by a
2-byte move.
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32-bit processor. Consider the use of a double precision shift instruction: shrd or shld if you
are programming on [A-32.

C.1.9 F-function

Key schedule includes F-functions, but the main usage of the F-function is for data randomization.
Refer to Section C.2.

C.1.10 Keyed Functions

Camellia has three keyed functions: bitwise XOR, bitwise OR, and bitwise AND. Consider the use
of a self-modifying code, if possible.

C.2 Data Randomization
C.2.1 Endian Conversion

Camellia prefers big endian. Thus, the code for little endian processors needs additional code for
endian conversions.

The most straightforward implementation converts the endian when loading a register from
memory and storing a register to memory. Only FL- and FL !-functions are endian dependent.
More precisely, only the 1-bit rotation in FL- or FL~'-function is endian dependent. This means
that you can convert endians just before or just after the 1-bit rotation with the appropriate subkey
generation scheme. A combination of computing endian conversion and 1-bit rotation may increase
the performance of Camellia using this technique. Details are described in Section C.2.2.

Some processors have a special instruction for endian conversion. For example, IA-32 (after
80486) has bswap instruction. Use these instructions. However, do not use the byte swap technique
described in [C98, Appendix A]. The technique reduces the code size, but it is not fast, since the
memory load and store instruction incurs long latency.

As described above, the endian problem only effects the 1-bit rotation of a 32-bit word. Thus,
we do not need full 64-bit word endian conversion.

The following are general methods to realize endian conversion for 32-bit register x. In the
following techniques, you can use either U or @ instead of + in the equations, and you can switch the
computational order between shifts including rotations and ANDs with an appropriate conversion
of masked constants.

Straightforward.
T (x <o) + ((£ N0x££00) Kg) + ((z >g) N 0x££00) + (z >94)

The technique has high parallelism.

Minimum operations without rotation.

(x <16) + (z >16)

r <
z < ((zNO0xff00ff) <g) + ((x >g) N 0xff0O0ff)
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Using rotations.

z + ((x N 0xL£00££)3>5) + ((r<g) N OxE£O0LE)

Using SSE. New Intel Pentium family processors including Pentium III has very effective in-
struction for reordering data, which is called pshufw [I99]. 5 instructions including pshufw are
sufficient to convert endian for 64-bit data.

C.2.2 1-bit Rotation in Little Endian Interpretation

As described in Section C.2.1, we do not need endian conversion when loading and storing texts if
we can efficiently implement 1-bit rotation in FL- and FL~'-functions.

Considering x as a 32-bit register that contains little endian data to be rotated by 1-bit. We
can compute 1-bit rotation by the following equation.

x + ((22) N 0xfefefefe) + ((x>>15) N Oxfefefefe) (1)

Of course, this technique requires an appropriate changes to subkey setup and other functions.
Note that + in Equation (1) can be replaced with U or @, and computing 2z can be done
by <1, <« or addition with z itself, and you can switch the computational order between shifts
including rotations and ANDs with an appropriate conversion of masked constants.
Confirm whether your processor has ANDNOT instruction, such as pandn in TA-32 and bic in
Alpha. In this case, you do not need to prepare the constant, Oxfefefefe.

C.2.3 Whitening

The key additions kws and kw4 can be combined into other keyed operations using the following
equations.

(zdk)dy = (zdy) Dk,

(zok)dl = z0(kal),

zak)nl = (nl)a(knl), (2)
(rok)<x; = (r<1)® (kky),

(z@k)Ul = (zUl)o (kNl),

where x, y, k, | are bit strings. Adjust subkeys at setup to eliminate 2 XORs in L.

C.2.4 Key XOR

Using Equations (2), you can move key XORs to any place if the movement does not go through
the S-function. For example, changing F-function computation P(S(X @ k)) to P(S(X)) @ k' may
improve instruction scheduling.
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C.2.5 S-function

51 is defined by the arithmetics in GF(2%). However, do not compute GF(2%) arithmetics; instead
precompute and hard-code a table in your program, see Table 4 in the specification.

We strongly suggest that you also precompute and hard-code s, s3, and s4 tables in addition
to s1, if you have a sufficient memory and 8-bit rotation is expensive. If you do not have sufficient
memory, please compute s, s3, and s4 from looked-up values in s; table using rotation.

If you have sufficient memory, and cost of table lookup is heavy as is true for Java, consider the
use of a two s-box combined table, for example (s1(y1), s2(y2)).

C.2.6 P-function

32-bit processor. Let (Zr,Zgr) = ((21, 22, 23, 24), (25, 26, 27, 28)) be the input of P-function and
(Z1,Z%) = ((#], 25, 23, 24), (25, 2, 27, 23)) be the output of P-function.
From Figure 5 in the specification, you can see that P-function can be computed as follows.

71, + Zp® (Zrks)
Zrp + ZR@(ZL<<<16)
71, <+ Zp®(Zr>>3g)
Zrp + ZR@(ZL>>>8)
Z; + Zgr
Zn + 7

The critical path of the new computation is long. We can modify the computation as follows.

Zr ¢ Jpk¥Kg
2, — Zip®Zr Zrp + Zpksg
Zi, — Zp>>g Zr +— Zrp® 7y
Z, — Zp®Zr Zrp + ZpKig
Z;, — Z5Kg Zr +— Zrp® 7y
Zi — ZR Z;{ — 7

The critical path of the above computation is decreased. It seems that the technique requires one
additional rotation, however, you can probably combine the first step of the above computation
and S-function without any additional cost.

8-bit processor (orthogonal mnemonics). If the instruction in your processor can XOR any
combination of registers and has sufficient registers, you can compute P-function by using just 16
XORs using Figure 5 in the specification.

8-bit processor (accumulator based). If your processor is accumulator based, minimizing
the number of XORs is not always a good idea, since the computation may require register load
from memory and store into memory many times. The following computation is optimized for an
accumulator based processor.

275 — 21®2 D25 D2 Dy
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zfl — zé@zl@zg@Z3
z'7 — za@zg@m@zs
2 — D2 Drpdy
26 — 23Dz D2 D2y
2y — D2 Dr3dy
2 — Dz D2s D2
2~ DD dy

When indexing 2} costs many operations, the following is useful.

q
1

21 D2 D23 D24 D25 D2z D2y D2y

Z1 & 0D2z2Dzs

Zy & 0D 23Dz
2y — 0Dz D 2y
zg — 0Bz D2
7 — 0D23Dd s
5 — 0Dz Dz d g
ZI7 i~ oDz DDy
g — DD d s

C.2.7 Substitution and Permutation
This section describes how to efficiently compute P o S compared to independently computing S

and P.

64-bit processor. If your processor has a sufficiently large first level cache, use the technique
described in [RDPT96]. The technique prepares the following tables defined by equation (3).

SPi(y1) = (s1(y1), s1(y1), s1(y1), 0, s1(y1), 0, 0, 51(y1))
SP?(yZ) = ( 0, 32(?/2)7 32(?/2)7 32(?/2)7 32(:1/2), 32(:1/2), 0, 0)
SPy(y3) = (s3(y3), 0, 53(y3), 53(y3), 0, s3(y3), s3(y3), 0)
SPy(ys) = (sa(ya), sa(ys), 0, s4(y4), 0, 0, 54(y4), s4(y1)) 3)
SPs(ys) = (0, s2(y5), s2(y5), s2(ys), 0, s2(y5), s2(ys), s2(ys))
SPs(ys) = (s3(ys), 0, s3(y6), 53(y6), 53(ys), 0, s3(ys), 53(ys))
SP:(yr) = (salyr), salyr), 0, s4(y7), salyr), sa(yr), 0, s4(y7))
SP(ys) = (s1(ys), s1(ys), s1(ys), 0, s1(ys), s1(ys), s1(ys), 0)
Next, compute the following equation:
8
(lev Zév Zil’n Zéllv Z:’n Zév 2,77 zé) « @ SPZ(yl)
=1

This technique requires the following operations.
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# of Table Lookups 8
# of XORs 7
Size of Table (KB) 16

If the first cache of the target processor is moderately large, replace a few of tables defined by
equation (3) with the tables below.

SPu(y) = (s1(y), s1(y), s1(y), s1(¥), 51(y), s1(y), s1(y), s1(y))
Spﬁ(y) = (32(y)v 32(y)v 32(y)v 32(y)v 32(y)a SQ(y)a SQ(y)a SQ(?J)) (4)
SPy(y) = (s3(y), s3(y), s3(y), s3(y), s3(y), s3(v), s3(y), s3(y))
SPs(y) = (s4(y), s4(y), s4(y), s4(y), 54(y), 54(y), s4(y), s4(y))

Then, mask the necessary byte positions. This technique requires the following operations if you
use only tables of equation (4).

# of Table Lookups 8
# of XORs 7
# of ANDs 8
Size of Table (KB) 8

When implementing this technique on Alpha architecture [C98], and if the number of registers is
insufficient for storing constants for masking operation, use zap or zapnot instructions.

If your processor can efficiently copy half bits of a register to the other half, for example,
punpckldg/punpckhdq or pshufw instructions in TA-32 [I99] which are realized after Pentium with
MMX technology and Pentium III, respectively, prepare SP;, SP,, SP3, and SPy defined in equa-
tion (3). Then, compute the following equation:

(Zi’zé’zé’z"l’zg’zé’z;’zé)
— SPi(y1) © SPy(y2) ® SP3(y3) © SPy(ys) ®v(SPi(ys) © SPa(ys) © SPs(ys) © SPi(yr)),

where v denotes the operation that copies the first 4 bytes to the last 4 bytes. This technique
requires the following operations.

# of Table Lookups 8
# of XORs 7
# of vs 1
Size of Table (KB) 8

32-bit processor. [AUO0] shows efficient implementations of Camellia-type substitution and
permutation networks. One of the technique prepares the following tables defined by equation (5):

SPio(y) = (s1(y), s1(y), s1(y), 0
SPy(y) = (0, s2(y), s2(y), s2(y)) (5)
SP33(y) = (s3(y), 0, s3(y), s3(y))
SPuos(y) = (sa(y), say), 0, s4(y))
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Then, compute as follows:

— SPi110(ys) ® SPy222(ys) ® SP3033(ys) ® SPasosa(yr)
— SPi10(y1) ® SPo222(y2) ® SP3033(y3) ® SPaaoa(ya)
~— DU

(ziazéazgaza)
Zé) A (Ziazéazgaza)@(U»g)

P
(25,26,27,

This technique requires the following operations.

# of Table Lookups 8
# of XORs 8
# of Rotations 1
Size of Table (KB) 4

[AUO00] also shows an implementation that is suitable for a processor in which rotation is very
costly. The technique prepares the following tables in addition to tables defined by equation (5):

SPiooi(y) = (s1(y), 0, 0, s1(y))
S Paop (y) = (32 (y)v 52 (y)v 0, 0)
SPo3z(y) = (0, s3(y), s3(y), 0)
SPoas(y) = (0, 0, s4(y), sa(y))

Then, compute as follows:

D <« SPii10(ys) ® SPo222(ys) ® SP3033(ys) ® SPasoa(yr)
(21, 25,25, 24) < D ® SPi110(y1) D SPo222(y2) ® SPs033(y3) & SPuaoa(ya)
(25, 26, 27, 28) < D ® SPigo1(y1) D SPa200(y2) ® SPoss0(y3) & SPooaa(ya)

This technique requires the following operations.

# of Table Lookups 12
# of XORs 11
Size of Table (KB) 8

C.2.8 Making Indices for s-box

You can make an index for s-box by simply using shifts and ANDs. However, several processors have
special instructions for making an index, for example, movzx in [A-32 [199], extbl in Alpha [C98].

movzx is a fast operation in P6, but it can be used only for the two least significant bytes. A
straightforward implementation uses eax, ebx, ecx, and edx registers for storing (L,, R;), and 2
rotations are used for making indices; 2 rotations are used for recovering byte order in the registers
every round. However, you can remove 2 rotations for recovering byte order every round if you
prepare rotated tables. Note that the byte order in registers returns to a natural order every 4
rounds.
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C.3 General Guidelines

This section describes general guidelines. The guidelines are useful to optimize Camellia as well as
other block ciphers. Please refer to the optimization manuals for each processor.

Avoid misaligned data accesses. Almost all processors penalize misaligned data access. Align
data to the word boundary.

Avoid partial data accesses. Most processors have a function to access a smaller part than word
size. However, this function may cause a penalty. Do not access partial data, even if you do
not need full size of word and you have sufficient memory.

Be careful of the size of the cache. If the program or its data exceeds the size of the cache,
the speed of the program will significantly decrease. Loop unrolling and table expansion are
good techniques to speed up the program, but do not exceed the size of the cache.

Use intrinsic functions. Several compilers support intrinsic functions. For example, when you
use Microsoft Visual C++ 6 compiler on TA-32, and declare “#pragma intrinsic(lrotl)”
and use “_1rotl”, the compiler generates rotation instructions in assembly language. Refer
to the manual of the compiler that you use for details.

Measuring precise speeds is difficult. The running time of your code depends on many fac-
tors: cache hit misses, OS interrupts, and so on. Furthermore, the cryptographic properties,
for example, the number of blocks to be encrypted, also effect the running time.

A few processors have an instruction to get the time stamp. For example, TA-32 (after
Pentium) has rdtsc [I99] and Alpha has rpcc [C98]. It is a good idea to use the time
stamp counter for measuring speeds, but you should not directly apply these instructions to
out-of-order architectures such as P6 and EV6.

If you want to measure speed precisely, consult good guidebooks. For example, if you use
Pentium family processors, refer to [F00].

D Design Policy

This paper presents a 128-bit block cipher called Camellia, which was jointly developed by NTT
and Mitsubishi Electric Corporation. Camellia supports 128-bit block size and 128-, 192-, and
256-bit key lengths, and so offers the same interface specifications as the Advanced Encryption
Standard (AES). The design goals of Camellia are as follows.

High level of security. The recent advances in cryptanalytic techniques are remarkable. A
quantitative evaluation of security against powerful cryptanalytic techniques such as differential
cryptanalysis [BS93] and linear cryptanalysis [M94] is considered to be essential in designing any
new block cipher. We evaluated the security of Camellia by utilizing state-of-art cryptanalytic
techniques. We have confirmed that Camellia has no differential and linear characteristics that hold
with probability more than 27128, Moreover, Camellia was designed to offer security against other
advanced cryptanalytic attacks including higher order differential attacks [K95, JK97], interpolation
attacks [JK97, A00], related-key attacks [B94, KSW96], truncated differential attacks [K95, MT99],
boomerang attacks [W99], and slide attacks [BW99, BW00].
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Efficiency on multiple platforms. As cryptographic systems are needed in various applica-
tions, encryption algorithms that can be implemented efficiently on a wide range of platforms are
desirable, however, few 128-bit block ciphers are suitable for both software and hardware imple-
mentation. Camellia was designed to offer excellent efficiency in hardware and software implemen-
tations, including gate count for hardware design, memory requirements in smart card implemen-
tations, as well as performance on multiple platforms.

Camellia consists of only 8-by-8-bit substitution tables (s-boxes) and logical operations that
can be efficiently implemented on a wide variety of platforms. Therefore, it can be implemented
efficiently in software, including the 8-bit processors used in low-end smart cards, 32-bit processors
widely used in PCs, and 64-bit processors. Camellia doesn’t use 32-bit integer additions and
multiplications, which are extensively used in some software-oriented 128-bit block ciphers. Such
operations perform well on platforms providing a high degree of support, e.g., Pentium II/III or
Athlon, but not as well on others. These operations can cause a longer critical path and larger
hardware implementation requirements.

The s-boxes of Camellia are designed to minimize hardware size. The four s-boxes are affine
equivalent to the inversion function in the finite field GF(2%). Moreover, we reduced the inversion
function in GF(28) to a few GF(2*) arithmetic operations. It enabled us to implement the s-boxes
by fewer gate counts.

The key schedule is very simple and shares part of its procedure with encryption. It supports
on-the-key subkey generation and subkeys are computable in any order. The memory requirement
for generating subkeys is quite small; an efficient implementation requires about 32-byte RAM for
128-bit keys and about 64-byte RAM for 192- and 256-bit keys.

E Design Rationale

E.1 F-function

The design strategy of the F-function of Camellia follows that of the F-function of E2 [KMAT98].
The main difference between E2 and Camellia is the adoption of the 1-round (conservative) SPN
(Substitution-Permutation Network), not the 2-round SPN, i.e. S-P-S. When the 1-round SPN is
used as the round function in a Feistel cipher, the theoretical evaluation of the upper bound of
differential and linear characteristic probability becomes more complicated, but the speed under
the same level of “real” security is expected to be improved. See Section 6 for detailed discussions
on security.

E.2 P-function

The design rationale of the P-function is similar to that of the P-function of E2. That is, for
computational efficiency, it should be represented using only bytewise exclusive-ORs and for secu-
rity against differential and linear cryptanalysis, its branch number should be optimal [KTM™99].
From among the linear transformations that satisfy these conditions, we chose one considering
highly efficient implementation on 32-processors [AU00] and high-end smart cards, as well as 8-bit
processors.
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E.3 s-boxes

As the s-boxes we adopted functions affine equivalent to the inversion function in GF(2%) for
enhanced security and small hardware design.

It is well known that the smallest of the maximum differential probability of functions in GF(28)
was proven to be 276, and the smallest of the maximum linear probability of functions in GF(2%)
is conjectured to be 276, There is a function affine equivalent to the inversion function in GF(2®)
that achieves the best known of the maximum differential and linear probabilities, 276. We choose
this kind of functions as s-boxes. Moreover, the high degree of the Boolean polynomial of every
output bit of the s-boxes makes it difficult to attack Camellia by higher order differential attacks.
The two affine functions that are performed at the input and output of the inversion function in
GF(2%) complicates

F Version Information

Camellia has been proposed in the following activities, where the proposed specification is exactly
the same as the specification described in this document.

Papers

e Technical report of IEICE,
K. Aoki, T. Ichikawa, M. Kanda, M. Matsui, S. Moriai, J. Nakajima, and T. Tokita, “Camel-
lia — A 128-bit Block Cipher”, Technical Report ISEC2000-6, The Institute of Electronics,
Information and Communication Engineers, 2000. (in Japanese).

e International Workshop SAC 2000
K. Aoki, T. Ichikawa, M. Kanda, M. Matsui, S. Moriai, J. Nakajima, and T. Tokita, “Camellia:
A 128-Bit Block Cipher Suitable for Multiple Platforms — Design and Analysis —,” In
Selected Areas in Cryptography, 7th Annual International Workshop, SAC 2000, Waterloo,
Ontario, Canada, August 2000, Proceedings, Lecture Notes in Computer Science 2012, pp.39-
56, Springer-Verlag, 2001.

Standardization
e ISO 18033
e NESSIE

e [ETF
The followings were submitted as Internet-Drafts.

— J. Nakajima and S. Moriai,“A Description of the Camellia Encryption Algorithm”
<draft-nakajima-camellia-02.txt>

— S. Moriai, “Addition of the Camellia Encryption Algorithm to TLS”
<draft-ietf-tls-camellia-01.txt>
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G Object Identifier

The object identifier of Camellia is described in the Internet-Draft,” A Description of the Camellia
Encryption Algorithm ” . The following is extracted from the document.
The Object Identifier for Camellia in Cipher Block Chaining (CBC) mode is as follows:

e 128-bit key length, CBC mode
id-camellial28-cbc OBJECT IDENTIFIER ::=
{ iso(1) member-body(2) 392 200011 61 security(1)
algorithm(1l) symmetric-encryption-algorithm(1) camellial28-cbc(2) }

e 192-bit ke length, CBC mode
id-camellial92-cbc OBJECT IDENTIFIER ::=
{ iso(1) member-body(2) 392 200011 61 security(1)
algorithm(1l) symmetric-encryption-algorithm(1l) camellial92-cbc(3) }

e 256-bit key length, CBC mode
id-camellia256-cbc OBJECT IDENTIFIER ::=
{ iso(1) member-body(2) 392 200011 61 security(1)
algorithm(1l) symmetric-encryption-algorithm(1) camellia256-cbc(4) }

H Applications and Products

Camellia can be used for all applications of symmetric block ciphers. In particular, it is suitable
for secure communications and authentication.

Camellia can be implemented efficiently on a wide range of platforms, including software imple-
mentations on 32-bit/64-bit CPUs and low-end /high-end smart cards, and compact and high-speed
hardware implementations on ASICs and FPGAs.

Most of the information about applications of Camellia can be found at http://www.security.
melco.co.jp/
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