
Security Level of Cryptography —

Integer Factoring Problem (Factoring N = p2q)

December 2001

Contents

Summary 2

Detailed Evaluation 3

1 The Elliptic Curve Method 3

1.1 The ECM applied to N = pdq . 4

1.2 Running time estimates . 5

2 The Lattice Factoring Method 7

3 Factoring Using Jacobi Symbols 8

4 Conclusions: Recommended parameter sizes for N = pdq 9

References 10

1

Summary

Integers of the form N = pdq have found many application in cryptography. For example,

Okamoto et al. use N = p2q to give a fast digital signature scheme [12, 10, 3],

Okamoto and Uchiyama [13] use N = p2q to build an elegant public-key system, and

Takagi [16] shows how to use N = pdq to speed-up RSA decryption.

This report analyzes the effectiveness of various factoring techniques for factoring integers
of the form N = p2q (and more generally integers of the form N = pdq). We study the
effectiveness of three factoring techniques:

1. The Elliptic Curve Method (ECM) [7] augmented by Okamoto and Peralta [11],

2. The Lattice Factoring Method (LFM) [1], and

3. Factoring N = p2q using Jacobi symbols.

Our conclusion is that the LFM method and the Jacobi symbol method cannot currently be
used to attack N = p2q when N is at least 1024-bits long. On the other hand, the ECM method
with the improvements of Okamoto and Peralta poses a threat that should be addressed. When
using N = p2q one would like to ensure that the modulus size is sufficiently large to provide
the same level of security as 1024-bit standard RSA. Hence, our conclusions are three fold:

1. 1024-bit integers of the form N = p2q provide adequate security in the short term.
However, within 5 to 10 years the safety margins provided by such integers will likely
become unacceptable.

2. To provide security comparable to standard 1024-bit RSA it is recommended to use at
least a 1280-bit N = p2q modulus. We estimate that the running time for ECM on such
a modulus is comparable to the running time of the Number Field Sieve on 1024-bit RSA
(note that we are ignoring memory-space considerations).

3. 1024-bit integers of the form N = p3q should be considered insecure and should not be
used in deployed systems. They are susceptible to a factoring attack using the ECM
method.

We also show that integers of the form N = p2q have more structure than standard RSA
integers. We show that this structure may lead to new factoring algorithms specifically targeted
at N = p2q. Hence, factoring N = p2q might be much easier than factoring N = pq of the
same size. Currently we cannot exploit this extra structure of N = p2q to design new factoring
algorithms. Therefore this should be viewed as a theoretical threat rather than a real attack.

2

Detailed Evaluation

The report is organized as follows. We begin by analyzing the effectiveness of the Elliptic
Curve Method (ECM) for factoring integers of the form N = pdq. We mostly focus on square
integers N = p2q. We then estimate the running time of the ECM and deduce some bounds
on the size of N = p2q for proper security. Next, we consider the Lattice Factoring Method
(LFM) and show that it does not pose a threat to sufficiently large square integers. Finally, in
Section 3 we discuss a hypothetical approach to factoring square integers using Jacobi symbols
and conclude that factoring such numbers could be easier than factoring general RSA integers.

Note that we do not explicitly analyze the performance of the Number Field Sieve (NFS)
on integers of the form N = pdq. The NFS will take the same amount of time to factor N = p2q
as it will to factor N = pq of the same size. Hence, the NFS does not pose a threat to N = p2q
beyond the threat that it poses to standard RSA integers. Throughout the report we use an
estimated running time of the NFS on a standard 1024-bit RSA integer to assess the security
of integers N = p2q and N = p3q for various sizes of N .

Notation: Whenever we write N = p2q we assume that p and q are primes of approximately
the same size, i.e. p, q ≈ 3

√
N . Similarly, when we write N = p3q we assume p and q are primes

of approximately the same size, i.e. p, q ≈ 4
√

N .

1 The Elliptic Curve Method

The Elliptic Curve factoring Method (ECM) [7] is a general-purpose factoring algorithm that
performs well when the smallest prime factor is relatively small. Hence, it is natural to analyze
its performance on N = p2q since p and q are relatively small, i.e. p, q �

√
N . When p is the

smallest prime factor of N the asymptotic running time of ECM is:

L1/2,
√

2(p) = exp
(
(1.41 + o(1)) ln(p)1/2(ln ln(p))1/2

)
(1)

The term o(1) tends to 0 as p tends to infinity. Several practical speed-ups to the ECM give
an (approximately) constant factor improvement [8] over this asymptotic running time.

The ECM requires little memory-space to run. Asymptotically ECM only requires linear
space. Other factoring methods such as the NFS require large amounts of memory size (though
sub-exponential in the size of the number being factored). Hence, a pure time comparison
between ECM and NFS is a bit inaccurate since for a large factoring project (e.g. factoring
RSA-1024) the space requirements of NFS are prohibitive. In our estimates we make a note of
the difference in space requirements, but mostly rely on running-time for comparison between
different techniques.

The current record in ECM factoring belongs to Miyamoto [15] who succeeded in finding
a 183-bit factor of a 372-bit number. This project took about 13 days using a single 800MhZ
Pentium III. We will use this result as a base point for estimating the running-time of ECM
on large integers N = pdq.

3

1.1 The ECM applied to N = pdq

We briefly describe a simple variant of the ECM method and then discuss its adaptation to
integers of the form N = pdq.

Let B1, B2 be two smoothness bounds. Typically B1 is set to B1 = L1/2,
√

2/2(p) and B2 is
chosen as some larger value, e.g. B2 = 10B1. The ECM algorithm factors an integer N = pdq
by iterating the following steps until N is factored:

Init: Pick a random point T = (x0, y0) ∈ Z2
N and choose random a, b ∈ ZN such that

y2
0 = x3

0 + ax0 + b (mod N)

We refer to the set of points (x, y) ∈ Z2
N satisfying y2 = x3 + ax + b (mod N) as an

elliptic curve E/ZN . If we reduce a, b modulo q we get an elliptic curve E/Fq. It is
well known that the set of points on E/Fq forms an Abelian group. There is a natural
map φq : E/ZN → E/Fq defined by φq((x, y)) = (x mod q, y mod q). Let mq be the
(unknown) order of φq(T) in the group E/Fq. Similarly, let mp be the (unknown) order
of φp(T) in the group E/Fp.

Power: Let L ∈ Z be the product of all prime powers less than B1. Compute R = L·T ∈ E/ZN

by using the addition law on the curve E : y2 = x3 + ax + b. This step takes time
O(B1 log B1 log2 N).

Search: Suppose mq is a small multiple of a B1-smooth number. More precisely, suppose
mq = M ·m where M has no prime factor larger than B1 and m < B2. Then the point
φq(R) ∈ E/Fq has order dividing m on the curve E/Fq. Since m < B2 we know that
φq(R) has order less than B2 in E/Fq. We assume that φp(R) ∈ E/Fp has order much
larger than B2 on E/Fp.

Now, suppose we had two integers α1, α2 ∈ [0, B2] such that α1 = α2 mod m. Let
R1 = (x1, y1) = α1R and R2 = (x2, y2) = α2R. Then φq(R1) = φq(R2), but φp(R1) 6=
±φp(R2). Hence, x1 = x2 mod q, but x1 6= x2 mod p. We then obtain the factorization
of N by simply computing gcd(x1 − x2, N) = q.

Since m is not known to us the question is how to find such α1, α2. The simplest approach
is to pick k = 2d

√
B2 e random integers α1, . . . , αk ∈ [0, B2]. Then the birthday paradox

implies that with high probability there exists 0 ≤ u, v ≤ k such that αu = αv mod m.
To find the pair u, v we compute Ri = (xi, yi) = αiR for all i = 1, . . . , k. We know that
gcd(xu − xv, N) = q. Hence, given x1, . . . , xk ∈ ZN we need to find u, v satisfying this
gcd relation. Naively we can do this by trying all pairs 0 ≤ u, v ≤ k. This takes time
O(B2 log2 N).

Montgomery and Silverman [9] and Pollard proposed better algorithms for this last step
using FFT. Their algorithm takes x1, . . . , xk ∈ ZN as input and finds a pair u, v so that
gcd(xu − xv, N) = q in time O(

√
B2 log B2 log2 N). Asymptotically this is much faster

than the naive method. Unfortunately, the constants hidden by the big-O are relatively
large making this method less attractive.

The three steps above are repeated until N is factored. The expected number of iterations is
L1/2,

√
2/2(p).

4

The Okamoto-Peralta improvement: When N = p2q Okamoto and Peralta [11] propose
an improvement to the Search step in the above algorithm. Recall that the problem to solve
is given x1, . . . , xk ∈ ZN find a pair u, v satisfying gcd(xu − xv, N) = q. To do so, define the
signature of an element x ∈ Fq as

sig(x) =
[(

x

q

)
,

(
x + 1

q

)
, . . . ,

(
x + b

q

)]
∈ {±1, 0}b+1

where b = blog2 qc and
(

x
q

)
is the Legendre symbol of x mod q. It is conjectured that sig(x)

uniquely defines x ∈ Fq, namely if x 6= y then sig(x) 6= sig(y).

The main point of the Okamoto-Peralta improvement is that when N = p2q we can ef-
ficiently compute the signature of x1, . . . , xk ∈ ZN even though q is unknown. To see this
observe that when N = p2q the Jacobi symbol of x ∈ Z∗N satisfies

(x

N

)
=

(
x

p2

)
·
(

x

q

)
=

(
x

p

)2

·
(

x

q

)
=

(
x

q

)
Hence, we can compute the signature of xi mod q by computing the Jacobi symbols

(
xi+j

N

)
for j = 1, . . . , b. Once we compute the signatures of all the xi’s modulo q we can easily find
u, v such that sig(xu) = sig(xv) mod q in time O(k log k). Then xu = xv mod q. Hence, when
N = p2q the third step of ECM now takes time O(

√
B2 log B2 log2 N) where the constant in

the big-O notation is quite small. This means we can use a much larger value of B2. Okamoto
and Peralta claim that this method speeds up the ECM by approximately a factor of 50 for
the parameter sizes we are interested in.

Potential defense against Okamoto-Peralta: We note that the Okamoto-Peralta im-
provement only applies when ECM is close to finding the prime factor q of N = p2q. Hence,
for proper security it may make sense to increase the size of q by a few bits at the cost of
reducing the size of p. For example, it may make sense to increase the size of q by 10 bits and
reduce the size of p by 5 bits. This has no effect on the size of N = p2q, but it nullifies the
Okamoto-Peralta improvement to ECM since finding q is now harder.

ECM improvements for N = pdq: The Okamoto-Peralta improvement for N = p2q gen-
eralizes to N = pdq. To do so one defines the signature of x mod N using the d’th power
residue symbol [4, p. 204]. For a given x ∈ ZN one computes the signature of x mod q using
the Eisenstein reciprocity law [4, p. 207]. We do not give the details here.

1.2 Running time estimates

As mentioned earlier, the current record in ECM factoring belongs to Miyamoto [15] who
succeeded in finding a 183-bit factor of a general 372-bit number in 13 days using a single
800MhZ Pentium III. We will use this result as a base point for estimating the running-time
of ECM on large integers N = pdq.

5

We estimate the running time of ECM for factoring (1) 1024-bit N = p2q, (2) 1280-bit
N = p2q, and (3) 1024-bit N = p3q. Our estimates show that 1024-bit N = p3q is insecure
by today’s standards and should not be used in deployed systems. 1024-bit N = p2q is not as
strong as standard 1024-bit RSA, but may leave sufficient safety margins for short term use.
However, within five to ten years 1024-bit N = p2q is likely to become unacceptable. On the
other hand 1280-bit N = p2q seems to offer similar security to 1024-bit standard RSA and can
be adequately deployed.

1. Factoring 1024-bit N1 = p2q: Here the prime factor q is of order 1024/3 = 342-bits.
We use Equation 1 to compare the running for factoring such N1 with the result of Miyamoto.
The direct ratio of running times is:

L1/2,
√

2(2
342)

L1/2,
√

2(2
183)

= 7.76 · 106

Note that we are ignoring the o(1) term in Equation 1. Instead, we manually adjust our
estimate to take into account that arithmetic modulo a 1024-bit number takes longer than
arithmetic modulo a 372-bit number (the size of the modulus used by Miyamoto). Assuming
all arithmetic operations take quadratic time, we need to add a factor of (1024/372)2 = 7.57
to the estimate. This implies that finding a 342-bit factor of a 1024-bit modulus should take
approximately 5.88 · 107 times the work of finding a 183-bit factor of a 372-bit modulus. To be
conservative we include the factor of 50 improvement in ECM running time due to Okamoto-
Peralta. Hence, factoring a 1024-bit N1 = p2q should take approximately 42000 years on a
single 800MhZ Pentium III.

We compare the effort of factoring N1 using ECM to the effort of factoring RSA-155, a
512-bit integer [2]. RSA-155 was factored using the Number Field Sieve in 3.7 months using
about 300 machines. We see that factoring N1 using ECM takes about 460 times the work of
factoring RSA-155 using NFS. These numbers are only an estimate based on the asymptotic
formulas and could be off by as much as a factor of 10. So, suppose that finding a 342-bit factor
using ECM is 4000 times the effort of factoring RSA-155 using NFS. This safety margin might
be acceptable today, but may not be acceptable in 5 to 10 years given the rate of advance in
both hardware performance and hardware availability. We note that factoring a regular 1024-
bit RSA modulus N = pq would take 3.1 · 106 times the work of factoring RSA-155 (assuming
no memory-space constraints) which is a much larger safety margin than we have for 1024-bit
N = p2q.

2. Factoring 1024-bit N2 = p3q: Here the prime factor q is of order 1024/4 = 256-bits. We
use Equation 1 to compare the running time for factoring such N2 with the result of Miyamoto.
The direct ratio of running times is:

L1/2,
√

2(2
256)

L1/2,
√

2(2
183)

= 2486

As before we adjust our estimate by a factor of 7.57 to take into account that arithmetic modulo
a 1024 bit number takes longer than arithmetic modulo a 372-bit number. Hence, factoring a
1024-bit N2 = p3q should take approximately 670 years on a single 800MhZ Pentium III.

6

This comes out to be approximately 7.2 times the effort it took to factor RSA-155 (a 512 bit
integer) using NFS. These numbers are only an estimate based on the asymptotic formulas and
could be off by as much as a factor of 10. So, suppose that finding a 256-bit factor using ECM
is 72 times the effort of factoring RSA-155 using NFS. This safety margin is far smaller than
the margin provided by comparable standards. In fact, these calculations show that factoring
1024-bit N2 = p3q is within reach of a large factoring project today. Hence, 1024-bit numbers
of the form N2 = p3q should not be used in deployed systems.

3. Factoring 1280-bit N3 = p2q: Here the prime factor q is of order 1280/3 = 426-bits.
We use Equation 1 to compare the running for factoring such N3 with the result of Miyamoto.
The direct ratio of running times is:

L1/2,
√

2(2
426)

L1/2,
√

2(2
183)

= 8.8 · 109

As before we adjust our estimate by a factor of (1280/372)2 = 12 to take into account that
arithmetic modulo a 1280-bit number takes longer than arithmetic modulo a 372-bit number.
To be conservative we also include the factor of 50 improvement in ECM running time due to
Okamoto-Peralta. Hence, factoring a 1280-bit N3 = p2q should take approximately 7.6 · 107

years on a single 800MhZ Pentium III using ECM. This is approximately 8 · 105 times the
work of factoring RSA-512 which provides comparable security to that provided by standard
1024-bit RSA N = pq.

Remark: We note that our estimates in this section are based on asymptotic behavior. We
neglected some low order terms, but tried to be conservative where appropriate. The effect
of the Okamoto-Peralta improvement is a bit difficult to predict. We used a factor of 50 to
estimate the improvement for 1024-bit N = p2q since that seems to be a conservative estimate.

2 The Lattice Factoring Method

The special structure of N = p2q makes it susceptible to another factoring method called the
Lattice Factoring Method (LFM) [1]. The LFM is designed to factor very large integers of the
form N = pdq for large value of d, e.g. d ≈ 20. However, the method has some implications to
integers of the form N = p2q and N = p3q. We state the following theorem that easily follows
from Lemma 3.3 of [1]:

Theorem 2.1 Let N = pdq be an n-bit integer where blog2 pc = blog2 qc = n/(d + 1). Then
the LFM factoring algorithm will factor N in time O(2n/(d+1)2n4).

For square integers N = p2q we get a factoring algorithm whose running time is dominated
by the term 2n/9. For N = p3q we get an algorithm whose running time is dominated by the
term 2n/16. These dominant terms determine the number of iterations needed for the algorithm
to work. In each iteration the algorithm runs the LLL lattice bases reduction algorithm.

7

Therefore, the running time for each iteration is non-trivial. We use the experiments given
in [1] and assume that each iteration takes one hour on a 400MhZ Pentium II. As before we
analyze the running time of the LFM algorithm for (1) 1024-bit N = p2q, (2) 1024-bit N = p3q,
and (3) 1280-bit N = p2q.

1024-bit N = p2q: the expected number of iterations is 21024/9 = 2113. The number of itera-
tions alone is already too large to carry out. Considering that each iteration takes one
hour makes this algorithm completely infeasible.

1024-bit N = p3q: the expected number of iterations is 264. Taking one hour per iteration the
algorithm will take 1016 years on a single machine. This number is beyond the reach of
computers for the next 20 years. Hence, the LFM method is ineffective against 1024-bit
N = p3q.

1280-bit N = p2q: Here again the number of iterations is too large to carry out. The algo-
rithm will require an expected 2142 iterations. Again this is beyond the reach of computers
for the next 20 years.

In summary, the LFM method works well for very large numbers of the form N = pdq
with large d, but is ineffective against 1024-bit integers (or longer) of the form N = p2q and
N = p3q.

3 Factoring Using Jacobi Symbols

We conclude this report with an observation that suggests that integers of the form N = p2q
might be easier to factor than factoring N = pq. In other words, we show that N = p2q might
be susceptible to a class of integer factorization algorithms that do not apply to N = pq.

We begin with the observation of Okamoto-Peralta [11]. Let N = p2q and x ∈ Z∗N .
Okamoto and Peralta showed that we can easily determine whether x is a quadratic residue
modulo q without knowing q. This follows from the fact that

(
x
q

)
=

(
x
N

)
. Hence, x is a

quadratic residue in Fq if and only if the Jacobi symbol
(

x
N

)
is 1. Furthermore, the Jacobi

symbol
(

x
N

)
is easy to compute.

Using our ability to determine whether x is a quadratic residue modulo q can potentially
give rise to a new class of factoring algorithms for N = p2q. Let `1, `2, . . . , `k be the k
smallest odd integer primes (3, 5, . . .). If `i is a quadratic residue modulo q then q satisfies
certain congruence relations modulo 4`i. For example, if 3 is a quadratic residue modulo q
then q mod 12 ∈ {1,−1}. If 5 is a quadratic residue modulo q then q mod 20 ∈ {1, 9, 11, 19}.
Generally, every time we learn the Legendre symbol of ` mod q we learn that q mod 4` is one
of ` − 1 possible values. By using many small primes in this way we collect more and more
congruence information about q. The question is whether it is possible to recover q from all
this information. One can show that all this congruence information uniquely determines q,
but it is currently an open problem to find q given this information.

We can collect this information about q into a simple univariate modular polynomial as
follows. The one bit of information we learn from the Legendre symbol of ` mod q can be

8

converted via quadratic reciprocity into an equation in q of the form

q(`−1)/2 = (−1)b (mod `)

where b ∈ {0, 1} is known to us. We get one such equation for each small `i. This leads to the
following system of equations in q:

q(`1−1)/2 = (−1)b1 (mod `1)
...

q(`k−1)/2 = (−1)bk (mod `k)

Let L be the product of all the `i’s. Then we can apply the Chinese Remainder Theorem
(CRT) to all these equations to get a polynomial f(x) ∈ ZL[x] of degree (`k − 1)/2 for which
we know that f(q) = 0 mod L. When L is sufficiently large we know that q is a small root
of this polynomial (q < 3

√
N). Since the polynomial f(x) is easy to construct the question is

whether it is possible to recover all integers |y| < 3
√

N such that f(y) = 0 mod L. One of these
roots of f(x) will be the desired q. Currently, the best techniques for finding small roots of
modular equations (due to Coppersmith) do not seem capable of solving this problem.

This approach to factoring N = p2q does not apply to standard RSA moduli N = pq. We
are clearly using the special structure of p2q to deduce information about q. Currently we do
not know how to make use of this information. At any rate, this approach shows that factoring
N = p2q is potentially easier than factoring N = pq. The special structure of N = p2q opens
the door to new techniques that do not apply to N = pq.

Remark: As a final comment we note that the discussion in this section generalizes to
N = pdq for d > 2 by using the d’th power residue symbol (rather than the Legendre symbol).
This symbol can be computed using the Eisenstein reciprocity theorem [4, p. 207]. We also
note that an efficient factoring algorithm for N = p2q using the techniques of this section would
imply that computing quadratic residousity modulo a Blum integer is as hard as factoring the
integer — a long standing open problem.

4 Conclusions: Recommended parameter sizes for N = pdq

This report studies the effectiveness of various factoring techniques for factoring integers of the
form N = p2q and more generally integers of the form N = pdq. We studied the effectiveness
of three factoring techniques:

1. The Elliptic Curve Method [7] augmented by [11],
2. The Lattice Factoring Method [1], and
3. Factoring N = p2q using Jacobi symbols.

Our conclusion is that the LFM method and the Jacobi symbol method cannot currently be
used to attack N = p2q when N is 1024-bits long. On the other hand, the ECM method with
the improvements of Okamoto and Peralta poses a threat that should be addressed. When
using N = pdq one would like ensure that the modulus size is sufficiently large to provide the
same level of security as 1024-bit standard RSA. Our conclusions are three fold:

9

1. 1024-bit integers of the form N = p2q provide adequate security in the short term.
However, within 5 to 10 years the safety margins provided by such integers is likely to
become unacceptable.

2. To provide security comparable to standard 1024-bit RSA it is recommended to use at
least a 1280-bit N = p2q modulus. We estimate that the running time for ECM on such
a modulus is comparable to the running time of the Number Field Sieve on 1024-bit RSA
(note that we are ignoring memory-space constraints).

3. 1024-bit integers of the form N = p3q should be considered insecure since today they
are susceptible to attack using the ECM method. The ECM can be adapted to N = p3q
using a generalized Okamoto-Peralta improvement (generalized to make use of the cubic
symbol rather than the Legendre symbol).

We also pointed out in section 3 that integers of the form N = p2q have more structure than
standard RSA moduli. We showed that this may lead to new factoring algorithms specifically
targeted at N = p2q. Hence, factoring N = p2q might be easier than factoring N = pq of
the same size. However, we cannot currently exploit the extra structure of N = p2q to design
faster factoring algorithms.

References

[1] D. Boneh, G. Durfee, and N. Howgrave-Graham. “Factoring N = prq for Large r.” Pro-
ceedings of Crypto ’99, vol. 1666 of LNCS, pp. 326–337. Springer-Verlag, 1999.

[2] S. Cavalar et al. “Factorization of a 512-bit RSA Modulus”, Proc. of Eurocrypt ’2000.

[3] A. Fujioke, T. Okamoto, and S. Miyaguchi. “ESIGN: an efficient digital signature imple-
mentation for smartcards”, In. proc. Eurocrypt ’91, pp. 446–457, 1991.

[4] K. Ireland and M. Rosen “A classical introduction to modern number theory”, 2nd edition,
GTM 84, Springer, 1990.

[5] A. Lenstra and H.W. Lenstra Jr.. “Algorithms in Number Theory”, in Handbook of
Theoretical Computer Science (Volume A: Algorithms and Complexity), ch. 12, pp. 673–
715, 1990.

[6] A. Lenstra and H.W. Lenstra Jr.. “The development of the number field sieve”, Lecture
Notes in Mathematics, Vol. 1554, Springer-Verlag, 1994.

[7] H.W. Lenstra Jr.. “Factoring integers with elliptic curves”, Annuals of Mathematics,
126:649-673, 1987.

[8] P. Montgomery. “Speeding up the Pollard and Elliptic Curve methods of factorization”,
Math. Comp. Vol. 48 (1987), pp. 243–264.

[9] P. Montgomery and R. Silverman. “An FFT extension to the p− 1 factoring algorithm”,
Math. Comp. Vol. 54 (1990), pp. 839–854.

10

[10] T.Okamoto. “A Fast Signature Scheme Based on Congruential Polynomial Operations”,
IEEE Trans. on Inform. Theory, IT-36,1 (1990) 47–5

[11] E.Okamoto and R.Peralta. “Faster Factoring of Integers of a Special Form”, IEICE Trans-
actions on Fundamentals of Electronics, Communications, and Computer Sciences, E79-A,
n.4 (1996).

[12] T.Okamoto and A.Shiraishi. “A Fast Signature Scheme Based on Quadratic Inequalities”,
Proc. of the ACM Symp. Security and Privacy, ACM Press (1985)

[13] T. Okamoto and S. Uchiyama. “A new public key cryptosystem as secure as factoring”,
in Proc. Eurocrypt ’98, pp. 310–318, 1998.

[14] R. Silverman and Wagstaff Jr.. “A Practical analysis of the elliptic curve factoring algo-
rithm”, Math. Comp. Vol 61, 1993.

[15] I. Miyamoto. Report on ECM-net, Oct. 2001.
http://www.loria.fr/ zimmerma/records/ecmnet.html

[16] T. Takagi. “Fast RSA-type cryptosystem modulo pkq”, in Proc. Crypto ’98, pp. 318–326,
1998.

11

