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1 Executive Summary

This report evaluates the PSEC-KEM elliptic curve public-key encryption scheme as specified
in [26]. PSEC-KEM is provably secure in the random oracle model under the assumption that
the (computational) Diffie-Hellman problem for elliptic curves is intractable. We also compare
the security and performance of PSEC-KEM with that of ACE-KEM and ECIES-KEM.

2 Introduction

Elliptic curve cryptosystems were first proposed by Neal Koblitz [15] and Victor Miller [21] in
1985. In principle, any discrete logarithm cryptographic scheme can be implemented using an
elliptic curve group as the underlying algebraic structure. This includes the ElGamal encryption
scheme [11], which was the first discrete logarithm public-key encryption scheme. However,
the basic ElGamal encryption scheme is well-known to be insecure in the sense that it does
not meet stringent security requirements of semantic security against adaptive chosen-message
attacks. (For further discussion on why the basic ElGamal encryption is insecure, see [6].) This
has motivated many researchers to propose variants of the ElGamal encryption scheme that are
both efficient and can be proven secure under assumptions that can be reasonably justified.

HISTORY OF PSEC-KEM. PSEC-1, PSEC-2 and PSEC-3 are three kinds of ElGamal-like
public-key encryption schemes that were submitted to the CRYPTREC 2000 project. The pro-
posers have since withdrawn the PSEC-1 and PSEC-3 submissions, and modified PSEC-2 to
address some observations made by Shoup [33]. Throughout this document, we refer only to
this revised version of PSEC-2 which is now called PSEC-KEM and is completely specified in
[26].

COMPARING PSEC-KEM TO OTHER ENCRYPTION SCHEMES. Statements regarding the se-
curity and performance of PSEC-KEM are more meaningful when they are compared to the
security and performance of other encryption schemes. PSEC-KEM can be compared to any
public-key encryption scheme, but it is advisable to compare it to some accepted and well-
known schemes. In addition, it should be compared to schemes that have somewhat similar
characteristics, and that would be appropriate for similar applications. The most suitable such
schemes are ACE-KEM (Advanced Cryptographic Engine–Key Encapsulation Method) and
ECIES-KEM (Elliptic Curve Integrated Encryption Scheme–Key Encapsulation Method).

ORGANIZATION. The remainder of this report is organized as follows. In Section 3, we describe
the PSEC-KEM key generation, encryption and decryption procedures. The security of PSEC-
KEM is analyzed in Section 4. Here we consider the provable security aspects of PSEC-KEM,
the hardness of the underlying Diffie-Hellman problem, and sizes of domain parameters. In
Section 5, we compare the performance and security of PSEC-KEM with two other ElGamal-
like elliptic curve public-key encryption schemes, namely ACE-KEM and ECIES-KEM. Our
conclusions are stated in Section 6.



3 Description of PSEC-KEM Page 3

3 Description of PSEC-KEM

PSEC-KEM is a key encapsulation method (KEM). Its goal is to select a symmetric key K and
securely transport it to some intended recipient (see Section 4). A KEM differs from a public-
key encryption scheme in that the input to the encryption algorithm is just the recipient’s public
key. The encryption algorithm outputs a symmetric key K and ciphertext c. The decryption
algorithm, on input c, recovers K.

Key encapsulation methods are intended to be used with a data encapsulation method (DEM).
The latter uses the symmetric key established with a KEM to encrypt and authenticate messages
of arbitrary lengths. The intent is that when a secure KEM is used with a secure DEM, the re-
sulting hybrid encryption scheme is a public-key encryption scheme that is semantically secure
against adaptive chosen-ciphertext attacks.

In this section, we describe the PSEC-KEM scheme from [26]. We note that the PSEC specifi-
cation does not propose a DEM1. Thus, the PSEC-KEM specification cannot be used (without
modification) to encrypt arbitrarily-long messages.

3.1 PSEC-KEM Domain Parameters

The PSEC-KEM scheme as described in [26] has certain parameters that (i) an encryptor and
decryptor must agree upon and mutually support (for interoperability); and (ii) require the sup-
port of advanced implementation techniques. These parameters are typically fixed for a domain
of intercommunicating users, and should be carefully selected since they affect both security
and performance.

1. The elliptic curve domain parameters consist of:

� An elliptic curve E defined over a finite field
�

q.
� A method for representing elements of

�
q.

� A point G � E � �
q � of prime order.

� The order n of G. The bitlength of n is denoted by k.

2. Another domain parameter is the key derivation function KDF. The PSEC-KEM specifi-
cation recommends the key derivation function KDF1 which is constructed from a hash
function by concatenating the values produced by hashing the input together with a 32-
bit counter that is incremented for each hash operation. The PSEC-KEM specification
recommends the hash function SHA-1 [22]. Since there is only one recommended hash

1Shoup [33] has proposed a DEM that uses a symmetric-key encryption scheme S to encrypt the plaintext, and
a MAC algorithm M to authenticate the ciphertext. The DEM is provably secure under the assumptions that S is
secure against passive attacks, and M is a secure one-time MAC algorithm.
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function, it is not necessary to include any information about KDF as part of the do-
main parameters. However, if the specification is to allow upgrades to more secure hash
functions such as SHA-256, SHA-384 and SHA-512 [24], then a hash function identifier
should be included as a domain parameter.

3. The bitlength l of the random seed.

The establishment or conveyance of domain parameters is generally outside the scope of a
public-key encryption scheme.

3.2 PSEC-KEM Key Generation

To generate a key pair for the elliptic curve domain parameters � E � �
q � G � n � , an entity A does

the following:

1. Select a random integer d from the interval
�
0 � n � 1 � .

2. Compute Q � dG.

3. A’s public key is Q.

4. A’s private key is d.

NOTE. A method should be included for validating the elliptic curve domain parameters
� E � �

q � G � n � and the public key Q. Such methods are described in several standards such as
ANSI X9.63 [2].

3.3 PSEC-KEM Encryption

To generate and encrypt a symmetric key K for an entity A whose public key is Q, an entity B
does the following:

1. Randomly select r ��� 0 � 1 � l.

2. Compute � t � � K � � KDF � r � , where t � has bitlength k 	 128 and K has the desired bitlength.

3. Compute t � t � mod n.

4. Compute the elliptic curve points T � tG and U � tQ.

5. Compute s � r 
 KDF � T � U � .

6. The ciphertext is � s � T � .

NOTE. Rationale should be provided for why t � is chosen to have bitlength k 	 128 and not just
k.
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3.4 PSEC-KEM Decryption

To recover a symmetric key from ciphertext � s � T � , an entity A with private key d does the
following:

1. Compute the elliptic curve point U � dT .

2. Compute r � s 
 KDF � T � U � .

3. Compute � t � � K � � KDF � r � , where t � has bitlength k 	 128 and K has the desired bitlength.

4. Compute t � t � mod n.

5. Compute the elliptic curve point T � � tG.

6. Verify that T � � T ; if not then output “invalid” and stop.

7. The symmetric key is K.

4 Security Analysis

The security objective of any public-key encryption scheme is semantic security against adap-
tive chosen-ciphertext attacks [12, 31]. Informally, this means that an adversary can learn
nothing about the plaintext corresponding to a given ciphertext c, even when the adversary is
allowed to obtain the plaintexts corresponding to ciphertexts (not equal to c) of its choice. An-
other equivalent formulation is the following. The goal of an adversary who launches an attack
against a legitimate entity is to find two plaintexts for which the adversary is able to distinguish
whether a challenge ciphertext is the encryption of the first plaintext or the second plaintext.
To achieve this goal, the adversary is permitted to access a decryption oracle that will decrypt
any ciphertext of the adversary’s choosing, with the exception of the challenge ciphertext. The
encryption scheme is semantically secure if no such adversary exists.

The security definition for a key encapsulation method is slightly different from that of a public-
key encryption scheme. Here, an adversary is given a target key-ciphertext pair � K � c � , where
c is a ciphertext generated by the legitimate entity, and K is either the symmetric key K corre-
sponding to c or a symmetric key K � which has been randomly generated independently of K.
The adversary’s task is to decide whether K � K or K � K � . To achieve this goal, the adversary
is permitted to access a decryption oracle that will decrypt any ciphertext of the adversary’s
choosing except for c itself. The KEM is semantically secure if no such adversary exists. We
denote this notion of security, which is due to Shoup [33], by IND-CCA (indistinguishability
against chosen-ciphertext attacks).

The PSEC-KEM submission [27] (see also [33]) includes a proof that PSEC-KEM is IND-
CCA (as a key encapsulation method) in the random oracle model under the assumption that
the (computational) Diffie-Hellman problem for elliptic curves (ECDHP) is intractable. By
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“random oracle” we mean that the KDF is modeled as a public random function [3]. The
ECDHP is studied in Section 4.4.

4.1 Random Oracle Assumption

The security proof for PSEC-KEM takes place in the random oracle model [3], and therefore
does not imply security in the real world where the hash function is no longer a random function.
This perspective was given some credence by Canetti, Goldreich and Halevi [8] who provided
examples of signature and encryption schemes which they proved secure in the random oracle
model, but which are insecure with any reasonable instantiation of the random function. How-
ever, the encryption and signature schemes in [8] are rather contrived, and a security proof in
the random oracle model is now widely accepted as providing valuable heuristic evidence for
security. Additionally, the security proof of PSEC-KEM implies that any attack on PSEC-KEM
must either solve the Diffie-Hellman problem, or exploit some properties of the hash function
employed.

4.2 Tightness of the Reduction

Security proofs typically work by providing a reduction from the solution of a problem P to the
breaking of a cryptographic scheme S. That is, one shows how P can be solved if one is given
an oracle for breaking S. In the case of the PSEC-KEM proof, S is PSEC-KEM while P is the
ECDH problem. The success of the reduction is measured by the tightness of the reduction.
More precisely, a reduction is tight if when an adversary can break S in time t with probability
ε, then the reduction algorithm that solves P runs in time t � with success probability ε � , where
t � � t and ε � � ε. A tight reduction is important because one then has the assurance that the
security level of S is very closely related to the security level of P. Thus one can select security
parameters in S to be of the same size as the parameters that make P intractable against all
known attacks.

The security proof of PSEC-KEM has a very tight reduction (see Theorem 3.1 of [27]). Thus,
for example, one can use a 160-bit parameter n and be assured that breaking PSEC-KEM will
require roughly the same amount of work as it takes to solve the ECDH problem for a 160-bit
n.

4.3 Elliptic Curve Discrete Logarithm Problem

The elliptic curve discrete logarithm problem (ECDLP) is the following: Given elliptic curve
domain parameters E ,

�
q, G, n and a point Q � dG (where 0

�
d

�
n � 1), find d.

Intractability of the ECDLP is clearly necessary for the security of PSEC-KEM. For, if the
ECDLP were easy, then an adversary could compute the private key d from a public key Q and
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thereafter decrypt all ciphertexts intended for the legitimate owner of Q. Intractability of the
ECDLP is also sufficient for the security of PSEC-KEM (in the random oracle model) since it
implies the intractability of the ECDHP (see Section 4.4 for a more precise formulation of this
statement).

The ECDLP has been extensively studied for the last sixteen years and no general-purpose
subexponential-time algorithm has been discovered. The best general-purpose algorithm known
is Pollard’s rho algorithm [30, 28] which has an expected running time of

�
πn � 2 steps and can

be effectively parallelized. Selecting n to be at least 2160 provides effective resistance against
this attack.

There are various special-purpose attacks known on the ECDLP—these attacks dictate that
some care must be exercised when selecting elliptic curve domain parameters for PSEC-KEM.
In particular, elliptic curves where either (i) n divides qk � 1 for some 1

�
k

�
20; or (ii) n � q

should definitely not be used as the ECLDP in these cases can be solved in subexponential
time (or better) by the Weil/Tate pairing attack and the prime field anomalous curve attack,
respectively. Furthermore, due to recent developments on Frey’s Weil descent attack, one should
be cautious about using elliptic curves over fields

�
2m where m is composite, and over fields

�
pm

where p is odd and m � 5 or m � 7—preferably these fields should be avoided altogether.

For a detailed survey of the state-in-the-art in algorithms for the ECDLP, see the CRYPTREC
report [10].

4.4 DH, DDH and GAP-DH Problems

Let G be a (cyclic) group of prime order n, and let g � G be a generator. We recall the definition
of the DL, DH, DDH and GAP-DH problems in G.

1. Discrete Logarithm Problem (DLP): Given g, n and gx (where x � R
�
0 � n � 1 � ), find x.

2. Diffie-Hellman Problem (DHP): Given g, n, gx and gy (where x � y � R
�
0 � n � 1 � ), find gxy.

3. Decision Diffie-Hellman Problem (DDHP): Given g, n, gx, gy (where x � y � R
�
0 � n � 1 � )

and gz (where either z � R
�
0 � n � 1 � with probability 1

2 or z � xy mod n with probability
1
2), decide whether or not z � xy � mod n � . See [5] for a survey of the DDHP and its
cryptographic applications.

4. Gap Diffie-Hellman Problem (GAP-DHP): Solve the DHP given an oracle for solving the
DDHP. This problem was first proposed by Okamoto and Pointcheval [29].

It is clear that the DDHP reduces in polynomial time to the DHP, and the DHP reduces in poly-
nomial time to the DLP. Polynomial time reductions of DLP to DHP, or of DHP to DDHP, are
not known. There are, however, some groups G in which the DLP is believed to be intractable
but where the DLP can be reduced in polynomial time to the DHP in G; examples include ar-
bitrary cyclic groups of order n where φ � n � is smooth (see [4]). There are also some groups
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in which no polynomial time algorithms for the DHP are known, but where the DDHP can be
solved in polynomial time; examples include certain supersingular elliptic curves and certain
elliptic curves of trace 2 (see [13], [14] and [35]).

Maurer [18, 19] proved the polynomial time equivalence of the DLP and DHP in groups G
of prime order n under the assumption that certain elliptic curves exist and can be efficiently
found. Namely, if one is given an elliptic curve E defined over

�
n such that E � �

n � is cyclic and
#E � �

n � is � logn � c-smooth (i.e., the largest prime factor of #E � �
n � is at most � logn � c), then the

DLP in G can be reduced in polynomial time to the DHP in G. The coefficients of the elliptic
curve E comprise a polynomial size “hint” depending only on n that, once known, allows one
to solve any instance of the DLP in any group G of order n in polynomial time given a Diffie-
Hellman oracle for G. It is not known if this hint exists; however, heuristic arguments about
the distribution of smooth integers in the Hasse interval

�
n � 2

�
n 	 1 � n 	 2

�
n 	 1 � suggest that

such hints do exist. Even if the hint does exist, it is not known how to find it in polynomial
time—exhaustive search would, in general, take O � nc � time. Nevertheless, Maurer’s result can
be viewed as providing some evidence for the equivalence of the DLP and DHP.

Of more relevance to the security of PSEC-KEM is the result of Boneh and Lipton [7] which
states that if the ECDLP cannot be solved in L 1

2

�
n � subexponential time, then the ECDHP also

cannot be solved in L 1
2

�
n � time. Since it is widely believed that the ECDLP cannot be solved

in subexponential time (see Section 4.3), this provides very strong evidence for the hardness of
the ECDHP2.

Finally, we note that Shoup [32] has proved lower bounds of the form Ω � �
n � for the DLP,

DHP and DDHP in generic groups of prime order n. (A generic group is one whose elements
have random labelings and which comes equipped with an efficient oracle for performing the
group operation.) Shoup’s result provides some evidence for the intractability of the DLP, DHP
and DDHP in groups that are used in cryptography. It can also be proven that the DHP cannot
be reduced in polynomial time to the DDHP in the generic group model. This provides some
evidence for the intractability of the GAP-DHP.

4.5 Parameter Recommendations

The PSEC-KEM specification [26] sets the following minimum security requirements:

� k
�

160.
� l

�
128.

In addition, the following domain parameters are recommended:
2Since an Lq � 12 � algorithm is known for the discrete logarithm problem in the multiplicative group ���q of a finite

field, the Boneh-Lipton result does not apply, and hence we do not have a proof of equivalence of the DLP and DHP
for such groups. This is one important reason why an elliptic curve group is more attractive than the multiplicative
group of a finite field for use in protocols whose security is based on the hardness of the DHP.
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� k � 160.
� KDF = KDF1(SHA-1).
� l � 160.

These recommendations are appropriate for providing an 80-bit level of security. What is lack-
ing are concrete recommendations for the elliptic curve domain parameters. In particular, the
known classes of weak elliptic curves should be explicitly prohibited (see [10]). Also, further
details should be provided on the significance of the parameter l and the rationale for the choice
l � 160.

SELECTING PARAMETERS FOR LONG-TERM SECURITY. The recommended parameters only
provide one (fixed) level of security. If PSEC-KEM is to be used for long-term security, it
is imperative that the PSEC-KEM specification provide guidance on the selection of domain
parameters (n, elliptic curve, hash function, l) corresponding to increasing levels of security.
For example, recommendations could be provided for achieving 80-bit, 112-bit, 128-bit, 192-
bit and 256-bit levels of security (corresponding to the security levels believed to be possessed
by SKIPJACK, Triple-DES, AES-128, AES-192 and AES-256 [25]). Sample elliptic curves
for these security levels are provided in FIPS 186-2 [23], while the hash functions SHA-256,
SHA-384 and SHA-512 [24] provide 128, 192 and 256 bits of security, respectively.

5 Comparison With ACE-KEM and ECIES-KEM

In this section, we compare the performance and security of PSEC-KEM with ACE-KEM
and ECIES-KEM, which are two elliptic curve key encapsulation methods that offer the same
functionality as PSEC-KEM. ACE-KEM is a modification of the Cramer-Shoup public-key en-
cryption scheme [9], while ECIES-KEM is a modification of the ECIES public-key encryption
scheme [1, 34]. ACE-KEM and ECIES-KEM are fully specified in [33]. All of PSEC-KEM,
ACE-KEM and ECIES-KEM can be used together with a data encapsulation method to yield a
full-fledged public-key encryption scheme capable of encrypting messages of arbitrary lengths.

In the descriptions of ACE-KEM and ECIES-KEM below, domain parameters are elliptic curve
parameters � E � �

q � G � n � , a hash function H , and a key derivation function KDF. To simplify the
description of the schemes, we assume that the cofactor h � #E � �

q � � n is 1; that is, #E � �
q � � n.

5.1 ACE-KEM

Key Generation. To generate a key pair, an entity A does the following:

1. Select d � x � y � z � R
�
0 � n � 1 � .

2. Compute Q � dG, X � xG, Y � yG and Z � zG.



5 Comparison With ACE-KEM and ECIES-KEM Page 10

3. A’s public key is � Q � X � Y � Z � .

4. A’s private key is � d � x � y � z � .

Encryption. To generate and encrypt a symmetric key K for an entity A whose public key is
� Q � X � Y � Z � , an entity B does the following:

1. Select t � R
�
0 � n � 1 � .

2. Compute T � tG, U1 � tQ and U2 � tZ.

3. Compute the integer α � H � T � U1 � .

4. Compute the integer t � � α � t mod n.

5. Compute V � tX 	 t � Y .

6. Compute K � KDF � T � U2 � .

7. The ciphertext is � T � U1 � V � ; the symmetric key is K.

Decryption. To recover a symmetric key from ciphertext � T � U1 � V � , an entity A with private
key � d � x � y � z � does the following:

1. Compute the integer α � H � T � U1 � .

2. Compute the integer r � x 	 αy mod n.

3. Compute U �1 � dT and V � � rT .

4. If U �1
�� U1 or if V � �� V , then output “invalid” and stop.

5. Compute U2 � zT .

6. Compute the symmetric key K � KDF � T � U2 � .

5.2 ECIES-KEM

Key Generation. To generate a key pair, an entity A does the following:

1. Select d � R
�
0 � n � 1 � .

2. Compute Q � dG.

3. A’s public key is Q.

4. A’s private key is d.

Encryption. To generate and encrypt a symmetric key K for an entity A whose public key is Q,
an entity B does the following:
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1. Select t � R
�
1 � n � 1 � .

2. Compute T � tG and U � tQ.

3. Compute K � KDF � T � U � .

4. The ciphertext is T ; the symmetric key is K.

Decryption. To recover a symmetric key from ciphertext T , an entity A with private key d does
the following:

1. Compute U � dT .

2. Compute the symmetric key K � KDF � T � U � .

5.3 Comparison

This section compares the performance and security attributes of PSEC-KEM, ACE-KEM and
ECIES-KEM.

PERFORMANCE. The dominant computational steps in all three KEMs are the elliptic curve
point multiplication operations. The number of point multiplications required for encryption
and decryption is summarized in Table 1. Note that the data in Table 1 does not give the
complete picture since some of the point multiplications counted can be performed significantly
faster than others. For example, the computation of tG can be sped up if G is a fixed domain
parameter and memory is available for precomputed multiples of G. Also, two of the point
multiplications in ACE-KEM encryption � V � tX 	 t � Y ) can be sped up using Shamir’s trick
(see Algorithm 14.88 in [20]).

PSEC-KEM ACE-KEM ECIES-KEM

Encryption 2 5 2
Decryption 2 3 1

Table 1: Number of elliptic curve point multiplications for encryption and decryption.

We conclude that ACE-KEM encryption and decryption is significantly slower than their PSEC-
KEM and ECIES-KEM counterparts. PSEC-KEM and ECIES-KEM offer similar performance
with ECIES-KEM decryption being a little faster than PSEC-KEM decryption (the extra point
multiplication in PSEC-KEM decryption is T � � tG—here G is fixed, and so this operation can
be sped up considerably).

SECURITY. In the following, we only consider the elliptic curve versions of the DH, DDH and
GAP-DH problems. For each problem P, the “P assumption” is that P is intractable. We say
that a KEM is secure if it is IND-CCA (see Section 4).



6 Conclusions Page 12

Recall that PSEC-KEM has been proven secure in the random oracle model under the DH
assumption.

ACE-KEM has been proven secure under the DDH assumption (plus some reasonable assump-
tions on the hash function and KDF employed) [9, 33]. ACE-KEM has also been proven secure
in the random oracle model under the DH assumption [33].

ECIES-KEM has been proven secure under the assumption that a non-standard interactive vari-
ant of the DHP is intractable [1]. It has also been proven secure in the random oracle model
under the GAP-DH assumption [33].

The security proof for PSEC-KEM, security proof (under the DDH assumption) for ACE-KEM,
and the security proof (under the GAP-DH assumption) for ECIES-KEM are all tight—thus one
cannot judge one of these KEMs to be superior to the others based only on the tightness of the
security proofs. Hence, to compare the three KEMs from a security point of view, one has to
examine the relative plausibility of the assumptions made in their security proofs.

Considering only the three proofs in the random oracle model, one can conclude that AES-KEM
and PSEC-KEM provide equivalent security assurances, which is greater than that of ECIES-
KEM (since the GAP-DH assumption is stronger than the DH assumption). Recall, however,
that security proofs in the random oracle model only provide heuristic evidence for security
since the assumption that the hash functions are random does not hold for real-world hash func-
tions. If one considers only security proofs in a standard model (i.e., without a random oracle
assumption), then ACE-KEM is superior to both ECIES-KEM and PSEC-KEM—the security
proof of ECIES-KEM provides limited assurances since the variant of the DH assumption made
is non-standard and very strong, while a security proof for PSEC-KEM is not known.

6 Conclusions

PSEC-KEM is an elliptic curve scheme for generating and encrypting symmetric keys.

SECURITY. PSEC-KEM has been proven IND-CCA secure in the random oracle model under
the ECDH assumption. Since the ECDHP has, in a certain sense, been proven to be equivalent
to the ECDLP, and since the reduction in the security proof is very tight, one can be assured that
the security level of PSEC-KEM is closely related to the security level of the ECDLP.

The PSEC-KEM specification should include a data encapsulation method (DEM). Also, guid-
ance should be provided on the choice and size of domain parameters for long-term security.

COMPARISON WITH ACE-KEM AND ECIES-KEM. PSEC-KEM and ECIES-KEM have
roughly the same encryption and decryption performance, while ACE-KEM is significantly
slower. It is not possible to say with certainty which of the three KEMs are superior from a se-
curity point of view because of the differing assumptions made in their security proofs. Roughly
speaking though, ACE-KEM provides the greatest assurance. In fact, Shoup [33] has observed
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that ACE-KEM is at least as secure as ECIES-KEM because any adversary C1 of ACE-KEM
can be converted to an adversary C2 of ECIES-KEM which succeeds with the same probabil-
ity and has approximately the same running time as C1. PSEC-KEM and ECIES-KEM are
roughly comparable since PSEC-KEM has better assurances in the random oracle model, but
ECIES-KEM has better assurances in the standard model.
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