
Evaluation Report on the ESIGN signature scheme

Jacques Stern

1 Introduction

This document is an evaluation of the ESIGN signature scheme. Our work is based on
the analysis of various documents [12, 13, 14, 23], which provide the specification of
the scheme, as well as on various research papers related to the scheme. Among these
research papers are the original work [24, 22], proposing the design and the subsequent
cryptanalytic work [28, 16] of Vallée and al.

The present report is organized as follows: firstly, we review the ESIGN primitive,
and we discuss its relation to the so-called approximate e-th root problem (AERP).
Next, we recall the strongest security notion that is now mandatory for signature
schemes: security against existential forgery under adaptive chosen-message attacks.
This allows us to provide a proof of the security of ESIGN against a slight variant of
adaptive chosen-message attacks, in the random oracle model. This proof is based on
the assumption that AERP is intractable. We then analyze the security of the proposed
ESIGN signature in view of the previous proofs. In particular, we discuss whether one
can derive practical implications, notably in terms of key sizes. This is as requested by
IPA.

2 The ESIGN primitive and its relation to AERP

In this section, we review the RSA primitive, mainly for notational purposes, and
introduce the specific properties of RSA moduli of the form p2q. This leads us to
discuss the approximate e-th root problem.

2.1 The RSA primitive

The famous RSA primitive has been proposed by Rivest, Shamir and Adleman [26].
On input a security parameter k, the key generation algorithm of RSA chooses two
large primes p, q of equal size and issues the so-called modulus n = pq. The sizes of
p, q are set in such a way that the binary length |n| of n equals 2k. Additionally, an

1

exponent e, relatively prime to ϕ(n) = (p− 1)(q − 1) is chosen, so that the public key
is the pair (n, e).

The basic security assumption on which all uses of the RSA primitive rely is its
one-wayness (OW): using only public data, an attacker cannot invert the RSA function

x :−→ (xe) mod n

More precisely, denote by Succrsa(τ, k) the probability for an adversary to find the
preimage of a given element within time τ , in symbols:

Succrsa(τ, k) = Pr[((n, e), d)← K(1k), y ← ZN , x← A(n, e, y) : y = xe mod n],

then, for large enough moduli, this probability is extremely small. An asymptotic
version states that, when A has running time bounded by a polynomial function τ of
the security parameter, Succrsa(τ, k) eventually becomes smaller than the inverse of any
polynomial in k.

It is well known that, if d is the inverse of e modulo ϕ(n), yd mod n computes the
inverse of the RSA function. Thus, the factorization of n allows to invert the RSA
function, since d can be computed from p and q. It is unknown whether the converse is
true, i.e. whether factoring and inverting RSA are computationally equivalent. There
are indications that it might not be true (see [4]). Thus, the assumption that RSA is
one-way might be a stronger assumption than the hardness of factoring. Still, it is a
widely believed assumption and the only method to assess the strength of RSA is to
check whether the size of the modulus n outreaches the current performances of the
various factoring algorithms.

2.2 RSA moduli of the form p2q

Variants of RSA allow the use of more than two prime factors. Of particular interest in
the present report is the case of a modulus n = p2q, where p, q are two prime numbers
of equal size. Key generation of such moduli involves a straightforward modification:
on input a security parameter k, the key generation algorithm chooses two large primes
p, q of equal size k and issues the so-called modulus n = p2q. The sizes of p, q are set
in such a way that the binary length |n| of n equals 3k. Additionally, an exponent e,
relatively prime to ϕ(n) = (p − 1)(q − 1) is chosen, so that the public key is the pair
(n, e).

The following lemma discloses an algebraic property of the RSA function, which is
the basis of the design of ESIGN.

Lemma 1 Let r be an integer in Z?
n. Let α be the inverse of ere−1 in Z?

n. Then, for
any t in Zn

(r + αtpq)e = re + tpq mod n

2

Proof. The proof relies on the easy equality

(r + αtpq)e =
e∑

i=0

(e

i

)
re−i(αtpq)i mod n

= re + ere−1αtpq mod n

= re + tpq mod n

ut
Thus, given the trapdoor pq and the power re mod n of a randomly chosen r, one

can obtain an arithmetical progression consisting of e-th powers of known integers.
This offers an extremely efficient way to find an element of Z?

n whose e-th power lies in
a prescribed interval of length at least pq. One simply adjusts parameter t in the above.
Even if the interval is of length slightly < pq, but of the same order of magnitude, the
method is successful after a few trials. Thus interval lengths of 22k, 22k−1, n2/3 are
appropriate. Of course, it is also possible to invert the RSA function by computing the
inverse of e modulo ϕ(n) = p(p− 1)(q− 1). However, in settings where e is small, this
is much less efficient.

2.3 The approximate e-th root problem

As explained in the previous section, RSA moduli of the from p2q offer a very efficient
way to solve the following problem, having knowledge of the factorization of n: given
n and y in Z?

n, find x such that xe mod n lies in the interval [y, y + 22k−1), where the
bit-size of n is 3k and [y, y + 22k−1) denotes {u|y ≤ u < y + 22k−1}.

It is conjectured that the above problem, called the approximate e-th root problem
(AERP) in [23], is hard to solve. More precisely, denote by Succaerp(τ, k) the probability
for an adversary to find an element whose e-th power lies in the prescribed interval,
within time τ , in symbols:

Succaerp(τ, k) = Pr[(n, e)← K(1k), y ← ZN , x← A(N, e, y) : (xe mod n) ∈ [y, y+22k−1)],

then, for large enough moduli, this probability is extremely small. As usual, the asymp-
totic version states that, when A has running time bounded by a polynomial function
τ of the security parameter, Succaerp(τ, k) eventually becomes smaller than the inverse
of any polynomial in k. Variants of the above can be considered, where the length of
the interval is replaced by 22k or 22k+1.

Of course, the factorization of n allows to solve the AERP problem. It is unknown
whether the converse is true, i.e. whether AERP and inverting RSA are computation-
ally equivalent. This is conjectured in [14], as soon as e ≥ 4.

3

2.4 Small exponent AERP

2.4.1 The basic attack

Although it is not reported in clear terms in the literature, there is a straightforward
attack against AERP, for e ≤ 3. It is based on the following easy lemma.

Lemma 2 Let δ be a fixed positive real. For any large enough integer y, there is an
e-th power in the interval [y, y + e(1 + δ)y

e−1
e).

Proof. Computing over the reals, we let a = y1/e. Using the derivative of the function
xe, we get

(a + 1)e ≤ ae + e(a + 1)e−1 ≤ y + e(y1/e + 1)e−1 ≤ e(y
e−1

e)(1 +
1

y1/e
)e−1 ≤ e(1 + δ)y

e−1
e

Thus da + 1e has e-th power in the prescribed interval. ut
When e = 2, and y is in Z?

n, the interval length is much smaller than 22k−1. When

e = 3, the interval’s length is smaller than 22k−1 as long as y ≤ (22k−1

e(1+δ)
)3/2, which is a

significant proportion of all possible y’s. Thus, in both cases, extracting eth root over
the reals provides an easy forgery.

For all practical purposes, we will set δ = 0 in the above lemma. This is a way to
use the lemma in a probabilistic manner.

2.4.2 Improved attacks

The naive attack described in the previous section for e = 2, 3 can be avoided by
putting a lower bound on the e-th root to be found: it is indeed the case that the
attack produces a root of small value ≤ n1/e. Note that there is no such requirement
in the proposed version of ESIGN.

We will show that such protection can actually be bypassed, as demonstrated in [5].
We first consider the case e = 2. In this case, we can search for a solution to AERP of
the form x+tu, for suitably chosen x and u, so that the product c = 2xu mod n is small.
For example, we can choose u = nβ, β < 1/12, and pick x so that n ≤ 2xu < n + 2nβ.

(x + tu)2 = x2 + 2txu + t2u2 = x2 + 2tc + t2 mod n

We set z = (y − x2) mod n. Next, we adjust a > 0 so that au2 belongs to the interval
[z, z +n2β). We then use lemma 2 in order to choose an integer t, such that t2 is in the
interval [a, a + 2

√
a). It follows that

z ≤ au2 ≤ t2u2

≤ u2(a + 2
√

a)

≤ z + 2n2β + 2n2β
√

a

≤ z + 2n2β
√

n.

4

Adding x2 mod n encloses
(x2 + t2u2) mod n

in an interval with lower end point y and length ≤ 2n2β+1/2. Further adding 2txu yields
a square in an interval with lower end point y and length ≤ 2n2β+1/2 + 2

√
nnβ < n2/3.

The attack does not extend to the case e = 3. However, there is a way to bypass
the protection offered by bounding the square root from below, in this case as well.
Let x be such that 3x = n± 1. Write:

(x + 3u)3 = x3 + 9x2u + 27xu2 + 27u3 mod n

Since 3x mod n is ±1, then, provided u is small, the above is

(x3 mod n) + u± 9u2 + 27u3

let z = (y − x3) mod n. Using lemma 2 three times, we can find the cubes of three
consecutive integers in the interval [z, z + 9n2/3). One of them is divisible by 3 and
we interpret it as 3u in the above formula. Note that 3u is bounded by n1/3. Adding
x3 mod n + u± 9u2, we enclose

(x3 mod n) + u± 9u2 + 27u3

in an interval with lower end point y and length ≤ 9n2/3 + n2/3 + n1/3. Thus, we have
found a cube in an interval, whose prescribed lower end is y, and whose length is of the
same order of magnitude as n2/3. This provides a forgery attack, which is successful
with significant probability.

2.4.3 Lattice attacks

In [28], Vallée, Girault and Toffin extended the attack for the case e = 2, to show that
it was possible to constrain the square root in a prescribed interval of length n1/3+ε,
centered at x, while still having the square in a prescribed interval of length n2/3+ε,
centered at y. The algorithm is deterministic, once x and y have been chosen. However,
it may fail for certain values of x. The set of exceptional values are in proportion ' n−ε.
In the above, ε is any fixed small constant, but it is easily seen that nε can essentially
be set to any increasing function of the security parameter. Thus, the result easily
translates into a forgery: picking ε small enough, one ends up with a square in a
prescribed interval of length n1/3, with significant probability ' 1

nε .
The attack uses two dimensional lattices. We let α = 2x mod n and we consider

the lattice L(α) generated by the columns of the following matrix:

M =

(
bn1/3−εc 0

α n

)
5

We first claim that, for all values of α < n, except a fraction 4
nε of them, L(α) has no

non zero element of euclidean length ≤ n2/3−ε. To check the claim, observe that such
an element corresponds to a linear combination of the columns of M , with coefficients
u, v such that bn1/3−εcu ≤ n2/3−ε. This allows about 2n1/3 values of u. We further have
|αu mod n| ≤ n2/3−ε, which allows 2n2/3−ε values for α, for each fixed u. Altogether,
this makes 4n1−ε exceptional values of α.

We restrict our attention to the case where L(α) does not have a non-zero vector of
euclidean length ≤ n2/3−ε. We use the wording good values for the corresponding αs.
Given a good α, one applies the Gaussian reduction algorithm. One gets within time
O((log n)3) a basis of L(α) consisting of two non-zero vectors U and V such that

‖U‖ ≤ ‖V ‖ and |(U, V)| ≤ ‖U‖2/2.

where (U, V) denotes the usual inner product. If we define θ by cos θ = (U,V)
‖U‖.‖V ‖ ,

−π/2 ≤ θ ≤ π/2, we can compute the absolute value of the determinant of L(α) as
‖U‖.‖V ‖ sin θ. Since we have | cos θ| ≤ 1/2, we get sin θ ≥

√
3/2. Observing that

the determinant is precisely nbn1/3−εc, we get the approximate upper bound n4/3−ε

for (
√

3/2)‖U‖.‖V ‖. Since ‖U‖ is at least n2/3−ε, it follows that ‖V ‖ is bounded by
2√
3
n2/3.

We now consider T = (0, (y − x2) mod n), where y is the center of the prescribed
interval where a square should be found.

T = λU + µV, for some real λ, µ.

and define λ′, µ′ as the closest integers to λ, µ respectively. Let S = λ′U+µ′V . Observe
that T − S is such that

‖T − S‖2 = (1/2)2‖U‖2 + (1/2)2‖V ‖2 + (1/2)|(U, V)| ≤ ‖V ‖2

Thus, ‖T −S‖ is bounded by 2√
3
n2/3. Now, S is a lattice element and can be written as

a combination of the column vectors of M . Let u, v be the corresponding coefficients.
We can write the coordinates of T −S as (−bn1/3−εcu) and ((y−x2) mod n−uα−vn).
We get

|u|2 ≤ 4

3
n2/3+2ε

|(y − x2 − uα mod n)|2 ≤ 4

3
n4/3

Since α is 2x mod n, this encloses

(x2 + 2xu + u2) mod n

in an interval centered at y, of length ' 4
3
n2/3+ε. This is the square of (x+u), an integer

lying in the interval centered at x, of length ' 2√
3
n2/3+ε. Note that the multiplicative

constants are irrelevant since they can easily be absorbed into nε.

6

2.5 Conclusion

It is fair to say that there is no known attack against AERP when e is≥ 4. In particular,
it should be emphasized that the attack of Vallée and al., only applies to e = 2. There
happens to be some kind of common misunderstanding about this early work, maybe
because a confusion arises between the work in [28] and subsequent work [29] by the
same authors, where they applied lattice reduction to the problem of solving modular
polynomial equations of low degree. This pioneering work was spectacularly improved
by Coppersmith [7, 9]. However, as far as we know, it has not proved useful in the
context of ESIGN.

3 The provable security of ESIGN

In this section, we review the strongest security notion that is currently required for
signature schemes: security against existential forgery under adaptive chosen-message
attacks. Based on the assumption that AERP is intractable, we provide a proof, in the
random oracle model, that ESIGN almost meets this security level. More accurately,
we introduce a slight variation of adaptive chosen-message attacks, which we call single-
occurrence chosen message attacks, which appears needed to carry the proof. Besides
being based on a slightly weaker security model, our proof is different in spirit from [23]
and is therefore of independent interest. Contrary to what is claimed in [23], we believe
that the security result cannot be extended to the stronger security model.

3.1 Digital signatures and their security

In modern terms (see [17]), a digital signature scheme consists of three algorithms
(K, Σ, V):

• A key generation algorithm K, which, on input 1k, where k is the security param-
eter, outputs a pair (pk, sk) of matching public and private keys. Algorithm K is
probabilistic.

• A signing algorithm Σ, which receives a message m and the private key sk, and
outputs a signature σ = Σsk(m). The signing algorithm might be probabilistic.

• A verification algorithm V , which receives a candidate signature σ, a message m
and a public key pk, and returns an answer Vpk(m, σ) testing whether σ is a valid
signature of m with respect to pk. In general, the verification algorithm need not
be probabilistic.

Attacks against signature schemes can be classified according to the goals of the
adversary and to the resources that it can use. The goals are diverse:

7

• Disclosing the private key of the signer. It is the most drastic attack. It is termed
total break.

• Constructing an efficient algorithm which is able to sign any message with sig-
nificant probability of success. This is called universal forgery.

• Providing a single message/signature pair. This is called existential forgery.

In many cases the latter does not appear dangerous because the output message is
likely to be meaningless. Nevertheless, a signature scheme, which is not existentially
unforgeable, does not guarantee by itself the identity of the signer. For example, it
cannot be used to certify randomly looking elements, such as keys or compressed data.
Furthermore, it cannot formally guarantee the so-called non-repudiation property, since
anyone may be able to produce a message with a valid signature.

In terms of resources, the setting can also vary. We focus on two specific attacks
against signature schemes: the no-message attacks and the known-message attacks. In
the first scenario, the attacker only knows the public key of the signer. In the second,
the attacker has access to a list of valid message/signature pairs. Again, many sub-
cases appear, depending on how the adversary gains knowledge. The strongest is the
adaptive chosen-message attack (CMA), where the attacker can require the signer to
sign any message of its choice, where the queries are based upon previously obtained
answers. When signature generation is not dterministic, there may be several signatures
corresponding to a given message. A slightly weaker security model, which we call
single-occurrence adaptive chosen-message attack (SO-CMA), allows the adversary at
most one signature query for each message. In other words the adversary cannot submit
the same message twice for signature.

In chosen-message attacks, one should point out that existential forgery becomes the
ability to forge a fresh message/signature pair that has not been obtained from queries
asked during the attack. Again there is a subtle point here, related to the context
where several signatures may correspond to a given message. We actually adopt the
stronger rule that the attacker needs to forge the signature of message, whose signature
was not queried.

When designing a signature scheme, one wishes to rule out existential forgeries, even
under adaptive chosen-message attacks. More formally, one requires that the success
probability of any adversaryA, whose running time remains below some security bound
t, is negligible, where the success probability is defined by:

Succcma(A) = Pr
[
(pk, sk)← K(1k), (m, σ)← AΣsk(pk) : Vpk(m,σ) = 1

]
.

In the above, note the superscript Σsk, indicating adaptive calls to the signing algo-
rithm: this is consistent with the framework of relativized complexity theory, where
oracle calls are allowed and, accordingly, we will use the wording signing oracle in this

8

setting. When dealing with single-occurrence attacks, Succcma(A) is replaced by an
appropriately defined variant Succso−cma(A).

3.2 The random oracle model

Ideally, one would like to provide appropriate formatting rules for ESIGN, such that
the resulting signature scheme has provable security, based on the sole assumption
that AERP is hard. Unfortunately, as for many other schemes, no formatting rule is
currently known that allows such a proof.

Thus, the best one can hope for is a proof carried in a non-standard computational
model, as proposed by Bellare and Rogaway [1], following an earlier suggestion by
Fiat and Shamir [15]. In this model, called the random oracle model, concrete objects
such that hash functions are treated as random objects. This allows to carry through
the usual reduction arguments to the context of relativized computations, where the
hash function is treated as an oracle returning a random answer for each new query.
A reduction still uses an adversary as a subroutine of a program that contradicts a
mathematical assumption, such as the assumption that RSA is one-way. However,
probabilities are taken not only over coin tosses but also over the random oracle.

Of course, the significance of proofs carried in the random oracle is debatable.
Firstly, hash functions are deterministic and therefore do not return random answers.
Along those lines, Canetti et al. [6] gave an example of a signature scheme which is
secure in the random oracle model, but insecure under any instantiation of the random
oracle. Secondly, proofs in the random oracle model cannot easily receive a quantitative
interpretation. One would like to derive concrete estimates - in terms of key sizes -
from the proof: if a reduction is efficient, the security “loss” is small and the existence
of an efficient adversary leads to an algorithm for solving the underlying mathematical
problem, which is almost as efficient. Thus, key sizes that outreach the performances
of the known algorithms to break the underlying problem, can be used for the scheme
as well.

Despite these restrictions, the random oracle model has proved extremely useful
to analyze many encryption and signature schemes. It clearly provides an overall
guarantee that a scheme is not flawed, based on the intuition that an attacker would
be forced to use the hash function in a non generic way.

3.3 The provable version of ESIGN

Specifications of ESIGN, which appear in various documents, slightly differ from one
version to another. Document [13] sums up the changes. In this section, we will
describe the encoding rule from [23], and provide the corresponding security proof.
In a subsequent section, we will discuss whether any of the proposed modifications
degrades security.

9

3.3.1 Description

In document [23], the security parameter k is also denoted by pLen. The key generation
algorithm chooses two large primes p, q of equal size k and computes the modulus
n = p2q. The sizes of p, q are set in such a way that the binary length |n| of n equals
3k. Additionally, an exponent e > 4 is chosen. It is recommended that e = 2`. Key
generation is successful when n has 3k bits. Otherwise, it is performed anew.

Signature generation is performed as follows, using a hash function H, outputting
strings of length pLen− 1.

1. Pick at random r in Z?
pq.

2. Convert (0‖H(m)‖02k) into an integer y and compute z = (y − re) mod n.

3. Compute

w0 = d z

pq
e

w1 = w0.pq − z

If w1 ≥ 22k−1, return to step 1.

4. Set u = (w0.er
e−1) mod p and s = r + upq.

5. Output s as the signature of m.

Note that the algorithm improves on the basic paradigm of ESIGN. For example, it
picks r modulo pq and not modulo n. Also, it computes the inverse of ere−1 modulo p
and not modulo n. It can be seen that these changes do not affect the basic method:
the arithmetical progression re mod n + tpq consists of e-th powers of easily computed
integers, and one adjusts t so as to fall into a prescribed interval. Note that the test
at step 3 actually sets the length of this prescribed interval to 22k−1.

Signature verification converts integer se mod n into a bit string S of length 3k and
checks that [S]k = 0‖H(m), where [S]k denotes the k leading bits of S.

3.3.2 Security proof

For this signature scheme, one can prove, in the random oracle model, the following
security result, where Texp(k) denotes the computing time of modular exponentiation
modulo a 3k-bit integer.

Theorem 1 Let A be a SO-CMA-adversary against the ESIGN signature scheme that
produces an existential forgery, with success probability ε, within time τ , making qH

queries to the hash function and qs distinct requests to the signing oracle respectively.
Then, AERP can be solved with probability ε′, and within time τ ′, where

ε′ ≥ ε

qH

− (qH + qs)× (3/4)k − 1

2k−1
and τ ′ ≤ τ + k(qs + qH) · Texp(k).

10

Before turning to the proof, we clarify our notion of existential forgery: a forgery,
that provides a second signature of a message for which the adversary has already
obtained one from the signing oracle, is not accepted. We do not know how to extend
the proof to deal with such forgeries. We also mention that, contrary to what is claimed
in [23], the result only applies to single-occurrence adaptive chosen message attacks. We
do not know how to extend the proof to deal with the stronger CMA model. We finally
note that our method of proof is inspired by Shoup [27] and differs from [23]: we define
a sequence of Game1, Game2, etc of modified attack games starting from the actual
game Game0. Each of the games operates on the same underlying probability space:
the public and private key of the signature scheme, the coin tosses of the adversary A,
the values of the random oracles. Only the rules defining how the view is computed
differ from game to game. To go from one game to another, we repeatedly use the
following lemma from [27]:

Lemma 3 Let E1, E2 and F be events defined on a probabilistic space

Pr[E1 ∧ ¬F] = Pr[E2 ∧ ¬F] =⇒ |Pr[E1]− Pr[E2]| ≤ Pr[F].

Proof. The proof follows from easy computations:

|Pr[E1]− Pr[E2]| = |Pr[E1 ∧ ¬F] + Pr[E1 ∧ F]− Pr[E2 ∧ ¬F]− Pr[E2 ∧ F]|
= |Pr[E1 ∧ F]− Pr[E2 ∧ F]| = |Pr[E1 |F] · Pr[F]− Pr[E2 |F] · Pr[F]|
≤ |Pr[E1 |F]− Pr[E2 |F]| · Pr[F] ≤ Pr[F]

ut
Proof.(of theorem 1). We consider an adversary A outputting an existential forgery
(m, s), with probability ε, within time τ . We denote by qH and qs respectively the
number of queries from the random oracle H and from the signing oracle. As explained,
we start by playing the game coming from the actual adversary, and modify it step
by step, until we reach a final game, whose success probability has an upper-bound
obviously related to solving AERP.

Game0: The key generation algorithm K(1k) is run and produces a pair of keys (pk, sk).
The adversary A is fed with pk and, querying the random oracle H and the
signing oracle Σsk, it outputs a pair (m, s). We denote by S0 the event that
Vpk(m, s) = 1. We use a similar notation Si in any Gamei below. By definition,
we have Pr[S0] = ε.

Game1: In this game, we discard executions, which end up outputting a valid mes-
sage/signature pair (m, s), such that m has not been queried from H. This means
restricting to the event AskH that m has been queried from H. Unwinding the
ESIGN format, we write:

se = 0 ‖w ‖ ? modn.

11

If AskH does not hold, H(m) is undefined, and the probability that H(m) = w
holds is 1/2k−1: Pr[S0 | ¬AskH] ≤ 2−k+1. Thus, Pr[S1] = Pr[S0 ∧ AskH] ≥
Pr[S0]− 2−k+1.

Game2: In this game, we choose at random an index κ between 1 and qH . We let mκ be
the κ-th message queried to H. We then discard executions which output a valid
message/signature pair (m, s), such that m 6= mκ. Since the additional random

value κ is chosen independently of the execution of Game1, Pr[S2] = Pr[S1]
qH

.

Game3: In this game, we immediately abort if a signing query involves message mκ.
By the definition of existential forgery, this only eliminates executions outside
S2. Thus: Pr[S3] = Pr[S2].

Game4: We now simulate the random oracle H, by maintaining an appropriate list,
which we denote by H-List. For any fresh query m, we pick at random u ∈ Zn

and compute z = ue mod N , until the most significant bit of z is 0. We next parse
z as 0 ‖w ‖ ?, where w is of length k− 1 and ckeck whether z −w.22k is < 22k−1.
If this is true, we store (m, u, w) in H-List and returns w as the answer to the
oracle call. Otherwise we restart the simulation of the current query. However,
we stop and abort the game after k trials. This game differs from the previous
one if z remains undefined after k attempts.

| Pr[S4]− Pr[S3] | ≤ (qH + qs)× (3/4)k.

Game5: We modify the simulation by replacing the H(mκ) by v, where v is a bit string
of length k−1, which serves as an additional input. The distribution of H-outputs
is unchanged: Pr[S5] = Pr[S4].

Game6: We finally simulate the signing oracle: for any m, whose signature is queried,
we know that m 6= mκ cannot hold, since corresponding executions have been
aborted. Thus H-List includes a triple (m, u, w), such that ue mod N has its k
leading bits of the form 0‖H(m). Accordingly, u provides a valid signature of m.
Therefore, Pr[S6] = Pr[S5].

Summing up the above inequalities, we obtain

Pr[S6] ≥ Pr[S3]− (qH + qs)× (3/4)k ≥ ε

qH

− (qH + qs)× (3/4)k − 1

2k−1
.

When Game6 terminates outputting a valid message/signature pair (m, s), we unwind
the ESIGN format and get:

se = 0 ‖w ‖ ? modn with w = H(m).

12

If S6 holds, we know that m = mκ and H(m) = v. This leads to an element whose
e-th power lies in the interval [v22k, v22k + 22k), thus solving an instance of AERP.
We finally, have: Pr[S6] ≤ Succaerp(τ ′, k), where τ ′ denotes the running time of Game6.
This is the requested bound. Observe that τ ′ is the sum of the time for the original
attack, plus the time required for simulations, which amounts to at most k(qs + qH)
modular exponentiations. We get τ ′ ≤ τ + k(qs + qH) · Texp(k). ut

We close the section by several remarks.

Remark 1. Observe that, given an element y in Z?
n, we can define v as the binary

expansion of d y
22k e. If v does not have its leading bit 0, we stop. Otherwise, we can use

v as an input to game Game6. With probability

≥ ε

qH

− (qH + qs)× (3/4)k − 1

2k−1
,

the game returns an element of the interval [v22k, v22k + 22k), which is a subset of
[y, y + 22k+1). Thus, referring to section 2.3, we see that we have actually related the
security of ESIGN to the variant of AERP, where the interval has length 22k+1. Relating
to other variants would entail further constraints on the formatting, as observed in [23].

Remark 2. It is surprising to note that the verification algorithm accepts as valid
signatures which are not produced by the signature generation algorithm. This follows
from the fact that it does not ckeck that se mod n lies in the interval of length 22k−1

whose lower end point has binary expansion 0‖H(m)‖02k but only that [S]k = 0‖H(m),
which is not equivalent. However, this does not make the proof incorrect. On the
other hand, omitting the check w1 < 22k−1 at signature generation would definitely
make our security proof invalid. More precisely, the proof would collapse at Game4,
since there would be no way to ensure that z−w.22k follows the distribution generated
from message/signature pairs (m, s) by se − (0‖H(m).22k) mod n. By lack of such
simulation, it would become impossible to simulate the signing oracle in Game6.

Remark 3. We definitely had to use the SO-CMA model. If the adversary was allowed
to submit the same message twice to the signing oracle, the simulation would fail at
the second call, since there is a single signature available.

3.3.3 Jonsson’s trick

The security proof that appears in [23] replaces the k multiplicative factor in the
running time by 4. This is intuitively related to the fact that, on average, it takes at
most 4 steps to perform the simulation of each call to H in Game4. However, we believe
that the proof in [23] is not convincing, since it does not bound the corresponding error
probability. The correct approach has been suggested by Jonsson [20] in connexion with
PSS. It modifies the strategy for the simulation of H, in Game4: instead of limiting the
number of trials allowed, at each execution, to find a value of z in the correct range, it

13

sets a counter that bounds the overall number of retries, during the entire algorithm.
We now compare both strategies. To remain at a general level, we denote by θ the
probability that a satisfactory element z is found at each attempt. If one allows K
trials altogether, the game will pass q simulations with error probability

p ≤
i=q−1∑

i=0

(
K

i

)
θi(1− θ)K−i

≤
i=K∑
i=0

(
K

i

)
θi(1− θ)K−iti−(q−1) for any 0 < t < 1

≤
i=K∑
i=0

(
K

i

)
(tθ)i(1− θ)K−it−(q−1)

≤ t−(q−1)(tθ + 1− θ)K ≤ exp(−(q − 1) ln t + K ln(1− θ(1− t)))

≤ exp((q − 1)(1/t− 1)−Kθ(1− t)) ≤ exp((t− 1)(Kθ − (q − 1)/t)).

In order to bound this probability by some prescribed error bound 2−`, one sets

K ≥ 1

θ
×

(
` · ln 2

1− t
+

q − 1

t

)
.

The right hand side has its minimum at a value of t defined by(
1− t

t

)2

=
` ln 2

q − 1
, and thus t =

√
q − 1√

` ln 2 +
√

q − 1
.

The lower estimate becomes

K ≥ 1

θ
×

(√
` ln 2 +

√
q − 1

)2

≈ q

θ
.

Provided qH + qs is large, the above estimate duly provides the bound

τ ′ ≤ τ + 4(qs + qH) · Texp(k).

4 The practical security of ESIGN

In this section, we analyze the security of the proposed ESIGN signature in view of the
previous proofs. In particular, we discuss whether one can derive practical implications,
notably in terms of key sizes.

14

4.1 Modifications of the encoding

As already mentioned, there are several specifications of ESIGN, slightly different from
each other. Document [13] sums up the changes. This is certainly an unpleasant
feature for a standard, but one may cope with it. However, apparently minor changes
may degrade the security or, at least, make the security proof invalid. Accordingly, we
review the arguments of the previous sections in the context of the version submitted
to CRYPTREC [13].

4.1.1 EMSA–ESIGN

Document [13] defines an encoding method, called EMSA–ESIGN, that encodes mes-
sages into strings of length pLen, where pLen is another notation for k. However, it uses
a hash function, which outputs strings of length hLen ≤ pLen− 16. Encoding appends
a bit string of length pLen − hLen to the left of H(m). More precisely, the encoded
message reads

00‖PS‖FF‖H(m),

where PS is a padding string consisting of bytes different from FF, and where hexadec-
imal notation is used for the two remaining bytes.

The additional two bytes have a limited effect on the security proof. In Game4,
the simulation needs to try more random elements u ∈ Zn to meet the appropriate
redundancy. A random integer < n is the output of an EMSA–ESIGN encoding with
probability

θ ' 1

216
(1− 1

28
)

pLen−hLen−16
8 ,

whereas the original encoding had θ = 1/4. Note that this probability is rougly 2−16.6

when hLen = 160 and |n| = 1024, which is small but manageable.
However, the padding string PS has a quite negative effect on the security: in

Game5, it is only possible to input a string v of length hLen, and accordingly, the
forgery does not guarantee an output in a prescribed interval of length ' n2/3. Thus,
the security is not in term of AERP but in terms of the following variant of AERP: given
n of bit-size 3k and a bit string v of length hLen, find x such that the binary expansion of
xe mod n has a window of bits which coincide with v at positions 2k+1, · · · , 2k+hLen.

The problem is definitely easier to solve. Furthermore, when e is small enough,
there is a forgery based on the attack of section 2.4.1: to sign a message m, one sets
PS = 0 and considers the integer y whose binary expansion is FF‖H(m)‖02k. This
integer has ` = 2k + hLen + 8 bits, and applying lemma 2, one finds an element x
whose e-th power lies in the interval [y, y + ey

e−1
e). The length of the interval has

bit-size log e + e−1
e

`. In case it remains < 2k, the binary expansion of xe is of the form

15

FF‖H(m)‖? and x is a valid signature. the condition reads

log e + (1− 1

e
)(2k + hLen + 8) < 2k

or, equivalently,
2k ≥ e(hLen + log e + 8).

When hLen = 160, which corresponds to the mandatory use of SHA1, the forgery is
successful when |n| = 1024 and e = 4. It is equally successful for |n| = 2048 and e = 7.
When |n| = 2048 and e = 8, the forgery still has a significant success probability:
the right-hand side of the inequality exceeds the left-hand side by less than 3 and,
therefore, the forgery might overspill by 3 bits. With probability 1/8, these bits are
zero. Note that our observations definitely contradict the security analysis that appears
in [13], even though our attack does not endanger the value e = 1024, recommended
for implementations.

4.1.2 SP–ESIGN

Document [13] departs from earlier version by a further modification at signature gen-
eration: referring to the desciption from section 3.3.1, we note that it omits the check
w1 < 22k−1 at step 3. As observed insection 3.3.2, the security proof collapses at
Game4, since there is no way to ensure that z − w.22k follows the distribution gener-
ated from message/signature pairs (m, s) by se − f.22k mod n, where f is the integer
produced from m by EMSA–ESIGN. By lack of such simulation, it becomes impossible
to simulate the signing oracle in Game6.

Besides turning down provable security, the change has highly undesirable conse-
quences. It is easily seen that se − f.22k mod n is uniformly distributed in the interval
[0, pq). By the law of large numbers, averaging over a large number N of signatures
yields an approximation of the secret trapdoor pq with roughly its log

√
N leading bits

correct. This means 10 bits from one million signatures. Even if it does not seriously
endanger the scheme, this is clearly unpleasant.

4.2 Qualitative level of assurance

As observed in the previous section, the version of ESIGN appearing in the submission
to CRYPTREC [13] does not benefit from the security proof of section 3.3.2. Further-
more, small values of e allow a forgery attack. Several other standards appear to use
the same encoding (see [23]), and are thus at risk.

The submission to P1363a (document [23]) has provable security in the random
oracle model. However, contrary to what is claimed in [23], this holds only in the
weaker context of single-occurrence adaptive chosen-message attacks. The proof does
appear to extend to the usual CMA scenario. Also, the security is based on AERP. It

16

is questionable whether this problem has received enough attention from the research
community to form the basis of a cryptosystem. As already noted, the early work of
Vallée and al. has been somehow misunderstood. Also, even if no attack is known
when e ≥ 4, there is no indication either on how e should be chosen. This is actually
reflected into the variety of statements made by the designers of ESIGN: the following
recommendations are quoted in [23]

• e ≥ 4 in the ATM Forum/BTD-SECURITY, and ISO 14888-3,

• e ≥ 8 in [12],

• e ≥ 8 in [13], with a recommendation = 1024.

Given the lack of information on the exact status of AERP for small values of e, it
appears advisable to choose e as large as possible.

Concerning the modulus n, one may ask whether it is possible to speed up factor-
ization of numbers of the form p2q. There is an indication that the ECM factoring
method can be made slightly more efficient for such numbers (see [25]). However, the
ECM method currently disloses factors of at most 54 digits and it is highly unlikely
that the ECM method can endanger the scheme in a foreseeable future.

In recent work (see [3]), a new factoring method that applies to integers of the form
pdq has been found. The method is based on an earlier result of Coppersmith (see[8]),
showing that an RSA modulus n = pq, with p, q of the same size, can be factored given
half the most significant bits of p. It turns out that, for numbers of the form n = pdq,
with p, q of the same size, fewer bits are needed.

Note that disclosing the leading bits of p provides a rough approximation P of p.
What remains to be found is the difference x = p − P . The new method is based on
finding polynomials with short enough integer coefficients, which vanish at x modulo
some power pdm of p. Such polynomials are actually zero at x. Thus, factoring is
achieved by finding the appropriate root. The polynomial itself is computed by the
LLL lattice reduction algorithm from [21]. LLL is run on lattices of dimension d2 with
basis vectors of size O(d log n). Let γ be the corresponding computing time. Taking
into account the workfactor tied with guessing the approximation of p, the total running
time is

2
c+1
d+c

. log p.γ

where c is such that q ' pc.
Comparing the above estimate with the known running time for ECM, one can see

that the new method beats ECM for d larger than, approximately
√

log p. In the case
of ESIGN, where d = 2, the algorithm is certainly impractical.

17

bit-size complexity of NFS
of the modulus in log2

512 63
1024 85
4096 155
6144 182
8192 206

Figure 1: Complexity of factoring

4.3 Quantitative level of assurance

As explained in section 3.2, it is debatable whether or not the security estimates ob-
tained in the random oracle model can be used to derive key sizes. There is a further
difficulty in the case of ESIGN, since its security is based on the assumption that AERP
is a difficult problem. It is unclear whether one can identify the hardness of AERP to
the hardness of factoring. Finally, the reduction to AERP is not tight and the esti-
mates that were provided in the previous section cannot be used to derive key sizes. To
see this, observe that the success probability in theorem 1 has the approximate lower
bound ε

qH
and that the running time includes a term ≈ 4qHO(k3). We may of course

assume that the attack has been repeated 1/ε times to reach success probability close
to one. This yields an estimate of the time T ′ = τ ′/ε′ for solving AERP of the form
≈ 4 × q2

H . We now allow the adversary a number of hash queries qH = 2`, where `
is a security parameter. This allows solving AERP with complexity 4 × 22`. Taking
logarithms yields ≈ 2 + 2`.

We now use a table of time estimates for the best known factoring method NFS (see
figure 1). We derive an estimate of the key size corresponding to a given value of the
security parameter by searching for a modulus for which the righthand side is 2 + 2`.
As a typical case, one should select a modulus over 4000 bits to provide a security level
280. In the reverse direction, we see that the table indicates that a 1024-bit modulus
provides a quite low security level 242.

We can thus conclude that the security proof only gives assurance that the overall
design of ESIGN is not flawed. It does not appear possible to obtain any meaningful
indication on key sizes from the estimates derived from the proof.

5 Conclusions

We have investigated the security of the ESIGN primitive and its relation to AERP.
No attack against AERP is known when the exponent e is ≥ 4. Despite this fact,

18

It is questionable whether AERP has received enough attention from the research
community to form the basis of a cryptosystem.

Based on our analysis, we believe that the version of the ESIGN cryptosystem
described in the P1363 submission [23] withstands existential forgery against single-
occurrence adaptive chosen-message attacks, based on the hardness of AERP. We have
indeed provided a security proof in Shoup’s style [27], different from the proof earlier
published by Okamoto, Fujisaki and Morita [23]. Both proofs use the random oracle
model. However, the proof does not extend to the usual CMA scenario and, further-
more, the estimates that follow from our proof do not provide any conclusive evidence
in terms of practical parameter sizes.

Due to several modifications in the specification, the version of ESIGN currently
submitted to CRYPTREC and included in document [13] cannot benefit from the
above security proof. Furthermore, we have found a forgery attack that is efficient
for small values of the parameters. Although it does not apply to the recommended
parameter e = 1024, the forgery is successful for several combinations of parameters
claimed secure in [13]. Also, the version submitted to CRYPTREC allows to compute
a few leading bits of the secret trapdoor pq, from the transcript of a large number
of signatures. This is certainly undesirable. In conclusion, we regret that we cannot
recommend the version of ESIGN currently submitted to CRYPTREC.

References

[1] M. Bellare and P. Rogaway. Random Oracles Are Practical: a Paradigm for De-
signing Efficient Protocols. In Proc. of the 1st CCS, pages 62–73, ACM Press, New
York, 1993.

[2] M. Bellare and P. Rogaway. The Exact Security of Digital Signatures – How to
Sign with RSA and Rabin. In Eurocrypt ’96, LNCS 1070, pages 399–416, Springer-
Verlag, Berlin, 1996.

[3] D. Boneh, G. Durfee, and N. Howgrave-Graham, Factoring N = prq for large r,
Crypto’99, LNCS 1666, 1999, pages 326–337, Springer-Verlag, Berlin, 1999.

[4] D. Boneh and R. Venkatesan. Breaking RSA may not be equivalent to factoring.
In Eurocrypt ’98, LNCS 1402, pages 59–71, Springer-Verlag, Berlin, 1998.

[5] E. Brickell and J. M. DeLaurentis. An Attack on a Signature Scheme proposed by
Okamoto and Shiraishi. In Crypto ’85, LNCS 218, pages 28–32, Springer-Verlag,
Berlin, 1986.

[6] R. Canetti, O. Goldreich, and S. Halevi. The Random Oracles Methodology, Re-
visited. In Proc. of the 30th STOC, pages 209–218, ACM Press, New York, 1998.

19

[7] D. Coppersmith. Finding a Small Root of a Univariate Modular Equation. Euro-
crypt ’96, LNCS 1070, pages 155–165, Springer-Verlag, Berlin, 1996.

[8] D. Coppersmith. Finding a Small Root of a Bivariate Integer Equation; Factoring
with High Bits Known. Eurocrypt ’96, LNCS 1070, pages 155–165, Springer-Verlag,
Berlin, 1996.

[9] D. Coppersmith. Small Solutions to Polynomial Equations, and Low Exponent RSA
Vulnerabilities. J. of Cryptology, 10, 1997, 233–260.

[10] Y. Desmedt and A. M. Odlyzko. A Chosen text Attack on the RSA Cryptosystem
and Some Discrete Logarithm Schemes. In Crypto ’85, LNCS 218, pages 516–521,
Springer-Verlag, Berlin, 1986.

[11] W. Diffie and M. E. Hellman. New Directions in Cryptography. IEEE Transactions
on Information Theory, IT–22(6):644–654, 1976.

[12] Specification of ESIGN Signatures, 2000.

[13] NTT Corporation. ESIGN Specification, submission to CRYPTREC, September
2001.

[14] NTT Corporation. Self evaluation of ESIGN. submission to CRYPTREC, Septem-
ber 2001.

[15] A. Fiat and A. Shamir. How to Prove Yourself: Practical Solutions of Identification
and Signature Problems. In Crypto ’86, LNCS 263, pages 186–194, Springer-Verlag,
Berlin, 1987.

[16] M. Girault, P. Toffin and B. Vallée. Computation of Approximate L-th Roots
Modulo n and Application to Cryptography. In Crypto ’88, LNCS 403, pages
100-118, Springer-Verlag, Berlin, 1989.

[17] S. Goldwasser, S. Micali, and R. Rivest. A Digital Signature Scheme Se-
cure Against Adaptative Chosen-Message Attacks. SIAM Journal of Computing,
17(2):281–308, April 1988.

[18] IEEE Standard 1363–2000. Standard Specifications for Public Key Cryptography.
IEEE. Available from http://grouper.ieee.org/groups/1363, August 2000.

[19] IEEE P1363a Draft Version 9. Standard Specifications for Public Key Cryptog-
raphy:Additional Techniques.

[20] J. Jonsson. Security Proofs for RSA–PSS and Its Variants. Cryptology ePrint
Archive 2001/053. June 2001. Available from http://eprint.iacr.org/.

20

[21] A. K. Lenstra, H. W. Lenstra and L. Lovász, Factoring polynomials with rational
coefficients, Mathematische Ann., 261, (1982), 513–534.

[22] T. Okamoto. A Fast Signature Scheme Based on Congruential Polynomial Oper-
ations. IEEE Transactions on Information Theory, IT–36 (1), pages 47–53, 1990.

[23] T. Okamoto, E. Fujisaki and H. Morita. TSH-ESIGN: Efficient Digital Signature
Scheme Using Trisection Size Hash, Submission to P1363a, 1998.

[24] T. Okamoto and A. Shiraishi. A Fast Signature Scheme Based on Quadratic
Inequalities. Proc. of the ACM Symp. Security and Privacy, ACM Press, pages
123–132, 1985.

[25] R. Peralta and E. Okamoto, Faster Factoring of Integers of a Special Form , IE-
ICE Transactions on Fundamentals of Electronics, Communications, and Computer
Sciences, v. E79-A, n.4 (1996), 489–493.

[26] R. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital Signa-
tures and Public Key Cryptosystems. Communications of the ACM, 21(2):120–126,
February 1978.

[27] V. Shoup. OAEP Reconsidered. In Crypto ’2001, LNCS 2139, pages 239–259.
Springer-Verlag, Berlin, 2001. Also appeared in the Cryptology ePrint Archive
2000/060. November 2000. Available from http://eprint.iacr.org/.

[28] B. Vallée, M. Girault and P. Toffin. How to break Okamoto’s Cryptosystem by
Reducing Lattice Bases. In Eurocrypt ’88, LNCS 330, pages 281–292, Springer-
Verlag, Berlin, 1988.

[29] B. Vallée, M. Girault and P. Toffin. How to Guess `th Roots Modulo n by Reducing
Lattice Bases. In AAECC-6, LNCS 357, pages 427–442, Springer-Verlag, Berlin,
1988.

21

