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Abstract. CRYPTREC is planning to update the current e-Government Rec om-
mended Ciphers List published in 2003 by March 2013. The candidate algorithms
for 128-bit block ciphers are AES, Camellia, CIPHERUNICORN -A, Hierocrypt-3,
SC2000, and CLEFIA. For this purpose, CRYPTREC aims to have t he security
of these algorithms reevaluated using some novel techniques of cryptanalysis.
The document deals with two new techniques of symmetric-key cryptanalysis:
biclique-based MITM cryptanalysis and zero-correlation l inear cryptanalysis that
have recently turned out to be capable of attacking stronger ciphers than pre-
viously believed. We concentrate on block ciphers AES, Camellia, CLEFIA and
SC2000 here. More speci�cally, we evaluate AES, Camellia, CLEFIA and SC2000
with respect to biclique-based MITM cryptanalysis as well a s Camellia and CLE-
FIA with respect to zero-correlation linear cryptanalysis .
We conclude that all for all full ciphers in question AES, Cam ellia, CLEFIA
and SC2000 applying exhaustive MITM attacks can reduce the complexity of key
recovery with respect to brute force. Zero-correlation lin ear cryptanalysis turns
out applicable to round-reduced variants of Camellia and CL EFIA.
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1 Short Speci�cations of Ciphers

1.1 AES-128

For the sake of clarity, we will be trying to reuse as much notation as possible
from [13] { the work introducing biclique cryptanalysis for block ci phers and
applying it to AES. This also applies to the notations regarding the description
of AES-128.

AES-128 is a block cipher with 128-bit internal state and 128-bit key K . The
internal state is represented by a 4� 4 byte matrix, and the key is represented by a
4� 4 matrix. The plaintext is xored with the key, and then undergoes a sequence
of 10 rounds. Each round consists of four transformations: nonlinear bytewise
SubBytes, the byte permutation ShiftRows, linear transformation MixColumns,
and the addition with a subkey AddRoundKey. MixColumns is omitted in the
last round.

SubBytes is a nonlinear transformation operating on 8-bit S-boxes. The opera-
tion ShiftRows rotates bytes in row r by r positions to the left. The MixColumns
is a linear transformation with branch number 5, i.e. in the column equation
(y0; y1; y2; y3) = MC (x0; x1; x2; x3) only 5 and more variables can be non-zero.

We address two internal states in each round as follows: #1 isthe state before
SubBytes in round 1, #2 is the state after MixColumns in round 1, #3 is the
state before SubBytes in round 2,: : :, #19 is the state before SubBytes in round
10, #20 is the state after ShiftRows in round 10.

The key K is expanded to a sequence of keysK 0; K 1; K 2; : : : ; K 10, which
form a 4 � 60 byte array. Then the 128-bit subkeys $0; $1; $2; : : : ; $14 come out
of the sliding window with a 4-column step. The keys in the expanded key are
formed as follows. First,K 0 = K . Then, column 0 of K r is the column 0 ofK r � 1

xored with the nonlinear function (SK) of the last column of K r � 1. Subsequently,
column i of K r is the xor of column i � 1 of K r and of column i of K r � 1.

1.2 Camellia

Camellia [1] is a block cipher designed by researchers from Mitsubishi and NTT.
It is part of the ISO/IEC encryption mechanisms as well as NESSIE and CRYP-
TREC portfolios. The block size of Camellia is 128 bits. The key size of Camellia
is either 128, 192, or 256 bits. Thus, the interfaces are compatible to those of
AES.

Camellia is a balanced Feistel network of 24 rounds organized as 3 blocks of 6
rounds for Camellia-128 and 4 blocks of 6 rounds for Camellia-192 and Camellia-
256. The 6-round blocks are separated by the applications ofFL and FL � 1
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functions on the left-hand and right-hand halves of the Feistel state, correspond-
ingly. Before the �rst 6-round block and after the last 6-round block whitening
keys are added. The F-function maps 64 bits to 64 bits. The input is divided into
8 bytes. Each byte is �rst added with the corresponding byte of the expanded key
and then is passed through an 8-bit S-box. This is followed bya simple di�usion
layer which can be described as a multiplication by a binary matrix over the �eld
of 256 elements. TheFL=FL � 1 functions linear in the data input (consisting of
shifts and XORs) but are nonlinear in the key input, it being i ntroduced per
bitwise AND and OR. See Figure2.

1.3 CLEFIA

CLEFIA [ 69] is a 128-bit block cipher with its key length being 128,192 and 256
bits, which is compatible to AES. It employs a generalized Feistel structure with
four data lines, and the width of each data line is 32 bits. Additionally, there are
key whitening parts at the beginning and the end of the cipher. The numbers
of rounds of CLEFIA are 18, 22 and 26 for 128-bit, 192-bit and 256-bit keys,
respectively.

The F -function inside the GFN structure bears similarities to the buidling
blocks of AES: an addition of 4 key bytes (RK i ) to the input is followed 4 8-
bit S-boxes and a matrix-vector multiplication using a 4x4 MDS matrix (branch
number 5) over bytes. Before the �rst round and after the last round, prewhitening
and postwhitening is applied. See Figure3 for an illustration.

1.4 SC2000

SC2000 [68] is a block cipher designed by Fujitsu. It was considered by the
NESSIE project, which did not result in a selection though. SC2000 is part of
the CRYPTREC portfolio. The key size of SC2000 is 128, 192, or256 bits and
the block size of SC2000 is 128 bits. Thus, its interfaces arecompatible to those
of AES.

The round transform can be outlined in the following way. In a round, addi-
tion with subkey ( I function) is followed by a layer of 4-bit S-boxes (B function)
and by another addition with subkey (I function again). Then a round of bal-
anced Feistel-type transform (R function) is applied with an unkeyed F-function
consisting of a layer of 5-bit and 6-bit S-boxes followed by alinear transform (su-
perposition of a M and L), the swap of state halves (cross connection� ) and by
the Feistel-type transform of R function again. The number of rounds is either
6.5 (for SC2000-128) or 7.5 (for SC2000-192 and SC2000-256). Where the last
half round consists of functionsI , B and I only, omitting the R function.
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2 Basic Techniques

Block ciphers are essential to cryptography, both theoretically and practically.
Most bulk encryption and data authentication performed in t he �eld relies on an
e�cient block cipher, which is employed after the key has been negotiated in a
security protocol. The introduction of cryptanalytic tech niques that are based on
new principles is a rather rare event in the area of block ciphers. Recently, two new
techniques have been proposed for block ciphers: bicliquesand zero correlation.
We start with a brief introduction in the context of these tec hniques.

2.1 Bicliques

Today, the most frequently used block cipher is AES (Advanced Encryption Stan-
dard) [29] | the current U.S. encryption standard selected by NIST in a n open
competition. AES is the only publicly known cipher that is NSA-approved for pro-
tecting secret and top secret government information in theU.S. Recently, the
theoretical security of AES has been challenged by bicliquecryptanalysis [13].
Biclique key recovery is based on the meet-in-the-middle approach at its core but
borrows an important twist { initial structures { from the domain of hash function
cryptanalysis. Namely, biclique cryptanalysis uses the fact that, for some ciphers
such as AES, the adversary can e�ciently prepare structuresof internal states
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that cover many keys. The work [13] scrutinizes the notion of initial structures
for block ciphers and formalizes it tobicliques (complete bipartite graphs) which
are especially e�cient to construct. As a result, the author s of [13] propose key
recovery on all three variants of the full AES with computati onal complexities
below brute force, though rather high data complexities. It works in the standard
single secret key model. Biclique cryptanalysis has been successfully applied to
AES resulting in key recovery faster than brute force. For AES-128, the best
attack so far has computational complexity 2126:16 and data complexity 288.

Biclique key recovery may be considered as an advance in the �eld of symmetric-
key cryptography but it has been prepared by a considerable number of works in
the area of meet-in-the-middle (MITM) attacks on block ciphers [15,22,23,34,39]
and hash function cryptanalysis [2, 3, 38] including the introduction of initial
structures [65] and bicliques for preimage search in hash functions [45]. Since the
introduction of bicliques, an entire line of research emerged aiming to apply the
technique to various block ciphers [26,40,44,59,75].

Here we provide a brief overview of the existing biclique techniques as applied
to AES.

Biclique-based preimage �nding for hash was proposed in [45] by scrutiniz-
ing the concept of initial structures introduced in [65]. Biclique cryptanalysis for
ciphers was proposed by [13] in two di�erent paradigms: independent-biclique
and long-biclique approaches. It is the independent-biclique technique that has
resulted in key recovery for full AES. For the purposes of this report, we will
be focusing on independent bicliques. Correspondingly, for simplicity of presen-
tation, the description of biclique techniques in the sequel is explicitly tailored to
independent-bicliques for AES-128. For a general introduction into bicliques, we
refer to [13].

In the key recovery procedure of independent-biclique cryptanalysis for AES-
128, the entire space of 2128 keys is divided into non-overlapping groups of keys.
In each group of keys, every key is tested using MITM techniques faster than
with one AES computation. This accounts for the computational advantage of
the technique over brute force.

Balanced bicliques. Each group of keys has the structure of abiclique { a
complete bipartite graph. A biclique consists of two setsSx and Sy of intermediate
cipher states (two disjoint sets of vertices of the biclique) and a set of keysK which
maps each element in one set of states to each element in the other one (edges of
the biclique).

In the standard independent-biclique cryptanalysis, the biclique is de�ned
such that each set of states hasjSx j = jSy j = 2 d elements and the set of keys
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contains jKj = 2 2d keys, which actually corresponds to abalanced biclique{ a
biclique whose vertex sets have equal cardinalities. The structure of the (balanced)
biclique is shown in Figure8. To �x the notation, we denote Sx = f x j g, Sy = f yi g,
and K = f K [i; j ]g with i; j 2 f 0; 2d � 1g. d is called the bicliquedimension.

: : :

: : :
x0 x1 x2d � 1

y0 y1 y2d � 1

K [0; 0] K [2d � 1; 2d � 1]

Fig. 5. Balanced biclique of dimensiond

Bicliques via independent di�erentials. So far the most e�cient way of
building bicliques for AES is from independent related-keydi�erentials. Consider
two families of related-key di�erentials over the rounds covered by biclique (from
values x j to yi ): 2d � 1 distinct � -di�erentials

(0; � K
i ) 7�! � i

with input state di�erence 0, input key di�erence � K
i and output state di�erence

� i as well as 2d � 1 distinct r -di�erentials

(r j ; r K
j ) 7�! 0

with input state di�erence r j , input key di�erence r K
j and output state di�er-

ence 0. Now we assume that the� - and r -di�erentials do not share any active
nonlinear components (S-boxes in the case for AES). Then, ithas been shown
in [13] that if input x0, output y0 and key K [0; 0] conforms to both � - and
r -di�erentials, then the values

x j = x0 � r j ;
yi = y0 � � i ;
K [i; j ] = K [0; 0] � r K

j � � K
i

9



form a balanced biclique of dimensiond, with � 0 = r 0 = � K
0 = r K

0 = 0. The
computation over the biclique rounds from input x0 to output y0 with key K [0; 0]
is called the base computation. K [0; 0] is called thebase key.

For AES-128, the work [13] provides an 8-dimensional biclique over 2.5 last
rounds. That is, the vertex set Sy of the biclique coincides with the set of cipher-
texts in the given key group. This biclique is illustrated in Figure 6.

� -di�erentials r -di�erentials
base
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MC

MCMC

MCMC

MC

Step 1. Start with y0 = 0

Step 2. Add � i to the key

Step 3. Add r j to the key

� K
i r K

j

$8

$9

$10

#16

#17

#18

#19

#20

y 0y 0

x 0x 0

y i

x j , #15

Fig. 6. Biclique over 3 last rounds of AES-128 from independent di�erentials [13]

Key recovery. For AES-128, the entire space of 2128 keys is divided into 2112

non-overlapping groups (bicliques) of 22d = 2 16 keys each. In each biclique, the
base key is �xed.

Now a meet-in-the-middle key recovery with partial matching (in one interme-
diate state byte) and splice-and-cut technique (going overthe decryption oracle
from the generated ciphertexts to the corresponding plaintexts) is applied. For
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each combination ofx j and yi (corresponding to K [i; j ]), it is tested if there is a
match.

For each biclique, the computational complexity consists of the complexity
Cprecomp of preparing � - and r -propagations (including preparing the biclique),
the complexity Crecomp of recomputing states for each keyK [i; j ], and the com-
plexity Cfalsepos of checking the key candidates surviving the partial matching:

Cfull = 2 128� 2d(Cprecomp + Crecomp + Cfalsepos ):

The computational complexity is dominated by Crecomp . The data complexity is
determined by the number of state di�erences � j in all key groups, since the
ciphertext of the base computation remains the same in all key groups.

As regardsCrecomp , most computational advantage over brute force originates
from the fact that the adversary saves the computation of the3 (strictly speaking,
only 2.5 rounds, since MixColumns is omitted in the �nal round) last rounds of
AES-128. In fact, using about 28 partial evaluations of the cipher and some mi-
nor storage for � - and r -trails, one covers 216 combinations of x j and yi (keys).
Another part of computational advantage comes from the partial matching pro-
cedure that allows one to save almost 1.5 more rounds of computations. Finally,
the intermediate states x j do not di�use too fast under K [i; j ] in the backward
direction. Also the plaintexts obtained from ciphertext yi using the decryption
oracle with the right key E � 1(yi ), do not di�use immediately under K [i; j ]. This
allows the adversary to save more than one round of computations on top of that.

Combining all this yields a computational complexity of 2126:16 and a data
complexity of 288 chosen ciphertexts. Since the adversary cannot reject the right
key, the success probability is 1.

2.2 Zero Correlation

For the security evaluation of block ciphers, numerous techniques have been pro-
posed over the last decades. However, although various attacks, in particular
di�erential cryptanalysis and linear cryptanalysis and the ir variants, have been
extensively studied, new interesting results are still being discovered. Among oth-
ers, the fact that zero-correlation linear cryptanalysis [18,19] has been proposed
only very recently { while impossible di�erential cryptanal ysis [7, 20] (its coun-
terpart in the domain of di�erential cryptanalysis) has been known for about 15
years now { speaks for itself.

Zero-correlation cryptanalysis [18] is a novel promising attack technique for
block ciphers. The distinguishing property used in zero-correlation cryptanalysis
is the existence ofzero-correlation linear approximations over (a part of) the
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cipher. Those are linear approximations that hold true with a probability p of
exactly 1/2, that is, strictly unbiased approximations hav ing a correlation c =
2p � 1 equal to 0. This gives the adversary the possibility to gaininformation
from perfectly uncorrelated events.

We use the state-of-the-art techniques [?, 19] of zero correlation to decrease
the data complexity, in our cryptanalysis of Camellia, CLEFIA, that allow one to
take advantage of a maximum number of zero-correlation linear approximations
available without relying unnecessary assumptions.

Linear approximations with correlation zero Zero correlation linear crypt-
analysis has been introduced in [16]. Below we briey review its basic ideas and
methods.

Consider ann-bit block cipher f K with key K . Let P denote a plaintext which
is mapped to ciphertext C under key K , C = f K (P). If � P and � C are nonzero
plaintext and ciphertext linear masks of n bit each, we denote by� P ! � C the
linear approximation

� T
P P � � T

C C = 0:

Here, � T
A A denotes the multiplication of the transposed bit vector � A (linear mask

for A) by a column bit vector A over F2. The linear approximation � P ! � C has
probability

p� P ;� C = Pr
P 2 Fn

2

f � T
P P � � T

C C = 0g: (1)

The value
c� P ;� C = 2p� P ;� C � 1 (2)

is called the correlation (or bias) of linear approximation � P ! � C . Note that
p� P ;� C = 1=2 is equivalent to zero correlation c� P ;� C = 0:

p� P ;� C = Pr
P 2 Fn

2

f � T
P P � � T

C C = 0g = 1=2: (3)

In fact, for a randomly drawn permutation of su�ciently larg e bit sizen, zero
is the most frequent single value of correlation for a nontrivial linear approxi-
mation. Correlation goes to small values for increasingn, the probability to get
exactly zero decreases as a function ofn though. More precisely, the probability
of the linear approximation � P ! � C with � P ; � C 6= 0 to have zero correlation
can be approximated by

1
p

2�
2

4� n
2 : (4)
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Two examples Given a randomly chosen permutation, however, it is hard to
tell a priori which of its nontrivial linear approximations in particular has ze-
ro correlation. At the same time, it is often possible to identify groups of zero
correlation linear approximations for a block cipher f K once it has compact de-
scription with a distinct structure. Moreover, in many inte resting cases, these
linear approximations will have zero correlation for any key K . Here are two
examples:

{ AES: The data transform of AES has a set of zero correlation linearapprox-
imations over 4 rounds (3 full rounds appended by 1 incomplete rounds with
MixColumns omitted). If � and � 0 are 4-byte column linear masks with ex-
actly one nonzero byte, then each of the linear approximations (�; 0; 0; 0) !
(� 0; 0; 0; 0) over 4 AES rounds has zero correlation.

{ CLEFIA-type GFNs: CLEFIA-type generalized Feistel networks (also known
as type-II GFNs with 4 lines) have zero correlation linear approximations
over 9 rounds, if the underlying F-functions of the Feistel construction are
invertible. For a 6= 0, the linear approximations ( a;0; 0; 0) ! (0; 0; 0; a) and
(0; 0; a;0) ! (0; a;0; 0) over 9 rounds have zero correlation.

D

E

rounds covered by
zero correlation

linear approximation

plaintext P

ciphertext C

partial encryption

partial decryption

check for zero correlation

Fig. 7. High-level view of key recovery in zero correlation linear cryptanalysis
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Key recovery with zero correlation linear approximations Based on lin-
ear approximations of correlation zero, a technique similar to Matsui's Algo-
rithm 2 can be used for key recovery. Let the adversary haveN known plaintext-
ciphertexts and ` zero correlation linear approximations f � E ! � D g for a part
of the cipher, with ` = jf � E ! � D gj. The linear approximations f � E ! � D g are
placed in the middle of the attacked cipher. LetE and D be the partial interme-
diate states of the data transform at the boundaries of the linear approximations.

Then the key can be recovered using the following approach (see also Figure7):

1. Guess the bits of the key needed to computeE and D. For each guess:

(a) Partially encrypt the plaintexts and partially decrypt the ciphertexts up
to the boundaries of the zero correlation linear approximation � E ! � D .

(b) Estimate the correlations f ĉ� E ;� D g of all linear approximations in f � E !
� D g for the key guess using the partially encrypted and decrypted val-
ues E and D by counting how many times � T

E E � � T
D D is zero overN

input/output pairs, see ( 1) and (2).

(c) Perform a test on the estimated correlationsf ĉ� E ;� D g for f � E ! � D g to
tell of the estimated values off ĉ� E ;� D g are compatible with the hypothesis
that all of the actual values of f c� E ;� D g are zero.

2. Test the surviving key candidates against a necessary number of plaintext-
ciphertext pairs according to the unicity distance for the attacked cipher.

Step 1(c) of the technique above relies on an e�cient test distinguishing be-
tween the hypothesis that f c� E ;� D g are all zero and the alternative hypothesis.
The work [16] requires the exact evaluation of the correlation value (de�ned by
the probability of a linear approximation) and the data complexity is restricted
to N = 2 n in [16]. Thus, a small number ` of linear approximations is usual-
ly enough in [16] and ĉ� E ;� D = c� E ;� D , though the data complexity of the full
codebook is too restrictive.

For most ciphers (including the examples of Subsection2.2), however, a large
number ` of zero correlation linear approximations is available. This freedom
is not used in [16]. At the same time, it has been shown in the experimental
work [27] that any value of correlation can be used for key recovery ina lin-
ear attack with reduced data complexity, once enough linearapproximations are
available. Despite its convincing experimental evidence,[27] gives no theoretical
data complexity estimations and does not provide any ways ofconstructing linear
approximations with certain properties.
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3 New Techniques

3.1 Stars

For the purposes of this analysis, we propose to usestars (unbalanced bicliques
which are trees with one node and many leaves) for low data complexity key
recovery. Those are unbalanced bicliques which are trees with one node and many
leaves { for the analysis of block ciphers. We further apply this concept to discover
a star-based independent-biclique key recovery for the full AES-128 which requires
only one or two known plaintext-ciphertext pairs and works with computational
complexity 2126:7.

3.2 The concept of stars

We start with the observation that the biclique does not have to be balanced {
i.e. contain 2d states in each of its two vertex sets { to cover 22d keys. Indeed,
there is a biclique with just one state in one vertex set and 22d states in the other
one: Sx = f xg, Sy = f yi;j g, i; j 2 f 0; 2d � 1g, where eachyi;j is obtained by
encrypting x with key K [i; j ], covering 22d keys. This biclique is called a star of
dimension d.

: : :

x

y0;0 y0;1 y2d � 1;2d � 1

K [0; 0] K [2d � 1; 2d � 1]

Fig. 8. Star: maximally unbalanced biclique of dimensiond for the minimum data
complexity

Now, if we place the star at the beginning of the cipher, and let x be the
plaintext (or ciphertext) the data complexity of the MITM part of the ke y re-
covery will be exactly 1. Note that x can be any value and, thus, we deal with
a known-plaintext key recovery here. The overall data complexity will be solely
de�ned by the unicity distance of the cipher and, therefore,minimal theoretically
attainable.
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3.3 Stars from independent di�erentials

Similarly to balanced bicliques, stars can be constructed e�ciently from indepen-
dent sets of di�erentials. Unlike balanced bicliques, however, the necessary form
of di�erentials is di�erent. Suppose we have a set of 2d � 1 distinct related-key
� -di�erentials from x to yi;j :

(0; � K
i ) 7�! � i

and a set of 2d � 1 distinct related-key r -di�erentials from over the same part of
the cipher:

(0; r K
j ) 7�! r j :

We assume that the� -di�erentials and r -di�erentials do not share any active
nonlinear components. If input x, output y0;0 and key K [0; 0] conform to both
� - and r -di�erentials, then the values

x
yi;j = y0;0 � � i � r j ; and
K [i; j ] = K [0; 0] � � K

i � r K
j

form a star of dimensiond, with � 0 = r 0 = � K
0 = r K

0 = 0.

4 Improved Biclique Cryptanalysis of AES

4.1 Introduction

Today, the most frequently used block cipher is AES (Advanced Encryption Stan-
dard) [29] | the current U.S. encryption standard selected by NIST in a n open
competition. AES is the only publicly known cipher that is NSA-approved for
protecting secret and top secret government information inthe U.S.

The original work [13] introducing biclique key recovery leaves several ques-
tions unanswered though, which are crucial to judging aboutthe real-world se-
curity of AES and implications of the biclique cryptanalysi s in general:

{ Is there much potential in minimizing the data complexity of the biclique at-
tacks? In fact, it is low data complexity attacks that are most relevant in
practice, especially in the context of e�cient implementat ion of the attacks {
the point clearly made in [12]. Actually, the data complexity of the original
biclique attacks makes any practical implementation of them highly unrea-
sonable since the standard brute force is very likely to be both cheaper and
faster in reality (mainly due to the high requirements in terms of storage or
oracle access).
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{ Though the new technique has been coined after bicliques, the initial struc-
tures are explicitly limited to balanced bicliques only, i.e. complete bipartite
graphs the two set of vertices of which have exactly the same cardinality. So
the question remains: Can one take any advantage of usingother types of
bicliques as initial structures?

{ Finally, no comprehensive investigation ofattack optimality in terms of com-
putational complexity, data complexity or both has been performed. So it is
still not clear if there are faster biclique attacks, even in the same class of the
attacks as proposed in [13].

In this report, we aim to bridge these gaps and answer all three questions in
the positive for the case of AES-128:

{ As regards more general initial structures, we drop the balancedness require-
ment for bicliques. We propose to usestars, which are the most unbalanced
bicliques, having only one vertex in one of the two disjoint sets of biclique ver-
tices (see Section3.1). This allows us to come up with a star-based biclique
key recovery technique for block ciphers that inherently has the minimal the-
oretically attainable data complexity { the one due to the unicity distance.

{ In terms of the attack space exploration for biclique cryptanalysis, we lim-
it ourselves to the most promising class of attacks as applied to AES-128:
Namely, we enumerate all truncated independent balanced bicliques and stars
whose key modi�cation trails have a single active byte in some state of the
expanded key. For the sake of conciseness, we will refer to this class of at-
tacks as based ontight truncated independent bicliques and stars(see Sub-
section 4.2). Clearly, this exploration does not cover many advanced and in-
herently harder-to-analyze attack vectors such as long-bicliques (bicliques of
a lower dimension whose key modi�cation di�erentials share active S-boxes)
or narrow bicliques [44]. That is why, one cannot claim any formal bounds on
the complexity of biclique attack complexity in general.
Nonetheless, it is the tight truncated independent-biclique approach to key
recovery that has resulted in the fastest attack on the full AES-128 so far,
though requiring a part of the state to be recomputed for eachkey. However,
we believe that this investigation does provide important new insight into
the limits of the current techniques of biclique cryptanalysis when applied to
AES-128.

{ Using stars as initial structures, we propose the �rst key recovery on AES-128
with the minimal theoretically possible data complexity and faster than brute
force. It requires 1 or 2 known plaintexts and has computational complexi-
ty 2126:7 (Subsection 4.3). Note that this computational complexity is only
slightly higher than that of the original attack (of computa tional complexity
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2126:16 and data complexity 288). Moreover, both the time and data complex-
ities of this new attack are actually lower than those of the attack in [ 12]
(requiring 2128:9 time and 24 chosen plaintexts).

{ Next, we exhaustively enumerate all attacks based on tight truncated inde-
pendent bicliques and stars for AES-128 which have a data complexity lower
than the full codebook. It turns out that among them the ones of compu-
tational complexity 2 126:16 are fastest. Interestingly, this exactly corresponds
to the original key recovery on AES-128 [13]. We further investigate the data
complexity of these attacks for the biclique dimensiond = 8 and show that the
minimum data complexity is 264 (cf. 288 in the original attack). This implies
that the original attack did not have the optimal data comple xity.

{ To investigate the limits of this class of biclique cryptanalysis, we abandon
all restrictions on the data complexity and search for the fastest attack on
AES-128 in this class. We �nd that the one with computational complexity
2125:6 is fastest (though requiring the full code book). It is interesting that
this attack is based on independent-bicliques of length of 3full AES rounds.
This is the longest independent-biclique constructed so far for AES-128.

With respect to AES-128, the cryptanalytic results of the report are summa-
rized in Table 1.

Table 1. Secret key recovery with bicliques for full AES-128 (10 rounds)

data computations memory success prob biclique length (rounds) property shown reference

288 CC 2126 :16 28 1 2.5 - [13]

288 CP 2126 :89 28 1 2 - [12]

Unic. dist: 1 or 2 KP 2126 :7 28 1 1 fastest with minimum data Subsection 4.3

264 CC 2126 :16 28 1 2.5 fastest with < 2128 data Subsection 4.4

2128 2125 :6 28 1 3 fastest Subsection 4.4

4.2 A search tool for biclique attacks on AES-128

In this section, we describe how we enumerate all biclique key recoveries in a
large promising class of biclique attacks.

Enumerating bicliques. Clearly, going over all possible initial structures, even
without enumerating possibilities for the actual key recovery, would be infeasible
for the AES. So we have to con�ne the search space of attacks byimposing
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some limitations. In here, we describe the search space along with the respective
justi�cations:

{ First, we consider bicliques (complete bipartite graphs) as initial structures.
We stress that we include both balanced bicliques and starsin our search,
unlike the attacks of [13] and [12] that consider only balanced bicliques.

{ Second, we restrict the search toindependent-bicliques only. Those are exact-
ly the bicliques that can be constructed from independent related-key di�er-
entials, that is, related-key di�erentials that do not share active non-linear
components. The principle of independent-biclique construction is described
in Subsection2.1.
This constraint excludes such bicliques as long-bicliques[13] and narrow-
bicliques [44], which are especially challenging to enumerate. However,though
not optimal in the number of rounds covered, it is the independent-bicliques
that attain the highest advantages over brute force for full AES-128 so far.

{ Third, for AES-128, we con�ne the search to independent related-key di�er-
entials that have a key state in their trails with exactly one active byte. Note
that this byte does not have to be the byte where the key di�erence is inject-
ed and the key di�erence still can be injected in multiple bytes. Actually, the
best biclique key recoveries on AES-128 proposed so far are based on such
bicliques.

{ Finally, to keep the search space from exploding, we have to consider the
trails of the bilciques in a truncated manner: We do not di�erentiate between
the active values of the key modi�cation trails in our bicliq ues (values of
di�erences in the related-key di�erentials). In particular, this means that, once
activated, a di�erence in a byte of a trail cannot be cancelledout. This is a
signi�cant but necessary limitation since we believe it is infeasible to run the
exhaustive search otherwise, for excessively high computational complexities.

We implement these restrictions in a C program and are able tosuccessfully
enumerate all tight truncated independent balanced bicliques and starsof AES-
128 within a very limited time on a standard PC.

Searching for key recoveries. Having enumerated all the bilciques as described
above exhaustively, we apply MITM techniques to each of the obtained initial
structures to evaluate their time and data complexities. This is done as follows.

First of all, we set the optimization goal as minimizing the time complexity
for a given data complexity restriction. That is, in each search for a key recovery,
we �x an upper bound on the data complexity. Then we perform the exhaustive
search over all possibilities for matching. In terms of key enumeration, we impose
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the restriction that the forward and backward key modi�cati ons should have at
least one state of linear intersection. This stipulates thefull key space coverage
and success probability of 1. The MITM techniques used include partial matching
(the matching is performed on a byte of the state to save computations) and the
cut-and-splice technique (so that trails can go over the encryption/decryption
oracles to win degrees of freedom).

To evaluate the time complexity of a key recovery e�ciently o n-the-y, the
tool uses the computational model proposed in [13]: All linear operations (Ad-
dRoundKey, ShiftRows, and MixColumns) are ignored and one counts only the
number of S-box computations that have to be performed. One full AES-128 com-
putation is, thus, equivalent to 200 S-box computations { a metric that proved
to be meaningful in practice [12]. The evaluated time complexity is output in the
numbers of S-box computations that have to be performed per key tested. Again,
this is the parameter that has lead to the fastest attacks so far since it makes the
key group larger and minimizes the impact of biclique construction on the total
complexity.

Depending on the data complexity restriction, the tool can � nd the optimal
attack (the attack with lowest evaluated time complexity un der the data com-
plexity restriction) within a very limited lime on our PC.

As a second optimization goal, we haveminimizing the data complexity for a
given time complexity. This second optimization is applied once a key recovery
has been found in the previous step. At this point, we alreadyknow that there are
no faster key recoveries in our search space. So we check if the data complexity of
the fastest attack identi�ed can be reduced. This task typically requires much less
computations and can usually be completed within an hour on our computational
platform.

Applications to �nd attacks with minimal data and time complexities.
We applied the tool to search for three data complexity restrictions:

{ Minimum data complexity: In fact, the minimum data complexity attack of
Subsection4.3 was discovered using this tool by setting the upper bounds of
the key recovery to its theoretical minimum of the unicity di stance. So we
can claim that this is the fastest biclique key recovery with the minimal data
complexity of exactly the unicity distance in the class of biclique and key
recoveries covered by our tool. To recall its details, this key recovery requires
2126:7 time and 1 or 2 KPs of data. Note that the tool suggests that going for
a star as the initial structure is optimal in this case.

{ Data complexity strictly lower than the full codebook:This restriction is a
standard line that is informally drawn between interesting attacks { that

20



require less that the full codebook of texts - and less interesting attacks { that
can only work with the full codebook. The tool demonstrates that the fastest
biclique key recoveries in the covered class with these restrictions require
2126:16 time. Optimizing for data complexity among all attacks with this time
complexity yields that the lowest data complexity is 264 CCs. This attack is
summarized in Subsection4.4. This attack is based on a balanced biclique of
the exactly same lenth as the AES-128 biclique of [13]. However, the form of
the biclique in [13] was not optimal in terms of data complexity.

{ No data complexity constraint: The tool �nds that the fastest biclique key
recovery in the entire class of biclique attacks covered is the one requiring
2125:6 time and the full codebook of data. This attack provides an important
insight into the limits of the independent-biclique approach as developed so
far. This attack is outlined in Subsection 4.4 and relies on balanced bicliques.

4.3 Minimum data complexity key recovery for AES-128

Stars of dimension 8 over 1 round of AES-128 In AES-128, it is possible
to construct a star of dimension 8 over the �rst round. � -trail activates byte 0 of
key $0. r -trail activates byte 1 of key $0, see Figure9(a). Di�erence propagation
in those di�erentials over one round is non-overlapping till the end of round 1.
In state #4, there is a linear overlap between those and, already in round 2, one
has to recompute 2 S-boxes for each key. See Figure9(a).

Rather surprisingly, even if the length of the star is just one round, the form
of its trails is such that this short biclique still allows th e adversary to obtain a
reasonable computational advantage over brute force.

Key enumeration. We de�ne the 2112 groups of keys with respect to $0, i.e.
the �rst subkey which equals the master key. The base keys areall keys of the
form

0
0

,
where bytes 0 and 1 are �xed to zero. The other 14 bytes are �xedanew for each
key group. The keys in each group are enumerated with respectto the base key
by applying di�erence:

i
j

,
which yields 216 keys in a group.
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Fig. 9. Fastest biclique attack on AES-128 with minimum data: time 2126:7 and
data 1 or 2 KPs

Matching and recomputations. In the forward direction of matching, starting
in round 2, a part of the state has to be recomputed for each key. In round 2,
only 2 S-boxes have to be recomputed. Starting in round 3 and forwards, the
propagation a�ects the whole state. See Figure9(c).

In the backward direction of matching, one starts with the ciphertext obtained
using the encryption oracle under the right key for plaintext x. The � - and r -
propagations in the key schedule are such that only 5 bytes ofthe $10 depend on
both � and r . This means that only 5 S-boxes have to be recomputed in round
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10. Starting in round 9 and backwards, the propagation a�ects the full state. See
Figure 9(b).

We match on byte 12 in state #11 of round 5, in which only one S-boxes
need recomputation. In round 4 and round 6, only 4 S-boxes, respectively, are
recomputed. The S-boxes in the four remaining rounds need tobe recomputed
completely (another 64 S-boxes). No S-box recomputations are needed in the key
schedule.

Complexities. The matching yields a recomputation of 80 out of 200 S-boxes.
Thus, Crecomp � 214:678 in one key group. About 28 keys will be suggested in
each key group and need to be tested on more bytes of matching.This requires
at most 4 S-boxes to be recomputed in both rounds 4 and 6 as wellas 1 S-box in
round 5, i.e. at most Cfalsepos � 23:526. The complexity of precomputations and
star generation is upper-bounded byCprecomput � 28:5 full AES computations.
Thus, Cfull � 2126:698.

The data complexity exactly corresponds to the unicity distance of AES-
128 { the minimal data complexity theoretically attainable . 1 known plaintext-
ciphertext pair can sometimes be enough (with success probability of 1 =e �
0:3679). 2 known plaintext-ciphertext pairs yield a success probability of practi-
cally 1.

4.4 Fastest key recoveries for AES-128

Fastest biclique key recovery with less than the full codebook of data.
This attack is based on a balanced biclique of dimension 8 of the last 2.5 rounds
of AES-128. It is depicted in Figure 10(a). The forward and backwards trails in
the biclique have an intersection in byte 0 of $8. However, this intersection is
in a linear operation (xor) of the key schedule and does not a�ect the biclique
property. Note that the forward and backward trails in origi nal attack did not
have any intersection at all over the biclique. This is the additional degree of
freedom used in our key recovery. See Figure10(a).

The key is enumerated in $9 which is the only key state linear in the key
modi�cation both in forward and backward trails. The bytes o f key enumeration
with i and j are non-intersecting. i is placed in bytes 0,4,8, and 12.j is put in
bytes 5 and 9. The base key in each group is chosen such that thekey coverage
is complete and there are no intersections between the key groups: The bytes
not a�ected by key modi�cation run over all possibilities. In the bytes a�ected
by i -modi�cation, byte 0 is always set to zero and bytes 4,8, and 12 run over all
possibilities. Similarly, in the bytes of j -modi�cation, byte 5 is always 0 and byte
9 accepts all possible values. Thus, the key group size is 216.
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The key recovery is MITM with partial matching in byte 12 of da ta state #5
of round 3, where only one S-box needs recomputation. In round 2 and round
4, only 4 S-boxes, respectively, are recomputed. In round 7,only 8 S-boxes are
recomputed. In round 1, 5 S-boxes are recomputed as the plaintext is inuenced
by 5 active bytes of the backward key modi�cation through the key schedule. The
S-boxes of rounds 5 and 6 have to be recomputed completely. See Figures10(b)
and 10(c). Rounds 8-10 are covered by the biclique.

All in all, also counting the necessary recomputations in the key schedule
we arrive at 55 S-boxes that have to be recomputed for each key, resulting in
Crecomp � 214:137. As in the previous attacks, Cfalsepos � 23:526 and Cprecomp �
28:5. This yields Cfull � 2126:16. The data complexity as de�ned by the form of the
biclique is 264 chosen ciphertexts. As in all our attacks, the success probability is
1.

Fastest biclique key recovery. When we drop the constraint of data com-
plexity being below the full codebook, we can construct a balanced biclique of
dimension over 3 full AES-128 rounds and with the minimal recomputation of
just one S-box in the fourth round right after the biclique. T he biclique is placed
in rounds 2-4 which implies the data complexity of 2128 for the backward trail.
See11(a).

In the forward recomputation, one byte in round 5 is a�ected. See Fig-
ure 11(b). In the backward direction, four bytes in round 1 are recomputed.
See Figure11(c). The remainder of the rounds is the matching on one byte in
round 8. This involves recomputation of 2 full rounds (amounting to 32 S-boxes),
invocation of the encryption oracle, and recomputation of 9S-boxes in rounds
7,8 and 9.

Thus, we have to recompute 37 S-boxes altogether for each key, resulting
in Crecomp � 213:56. For all attacks of this type (matching on one byte), we
have Cfalsepos � 23:526. The precomputations are approximately the same with
Cprecomp � 28:5. This yields Cfull � 2125:6. The data complexity in this attack
is the full codebook. The success probability is again 1 since key coverage is
complete.

This key recovery can be converted into a preimage search forthe compres-
sion function constituted by AES-128 in Davies-Meyer mode.Here the attack
works o�ine and does not have to make any online queries. Thispreimage at-
tack requires 2125:6 AES-128 operations and �nds a preimage with probability
about 0.632. The generic preimage search would require 2128 time to succeed
with probability 0.632.
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Fig. 11. Fastest biclique attack on AES-128: time 2125:6 and full codebook
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5 Biclique Cryptanalysis of Camellia

5.1 Summary

For the purpose of this analysis, we con�ne ourselves to the case of independent
bicliques with at most a single-byte key modi�cation. This i s the type of biclique
cryptanalysis that proved most successful for AES. Becauseof the SPN structure
used in the round function of Camellia, we can presume that this will be also
a good choice for Camellia. Moreover, since the purpose of this document is an
indication of a security level for these ciphers, we take theapproach of letting
the data complexity of such biclique attacks be unlimited. This might result in
biclique attacks that require full code book, though not necessarily. However,
their computational complexity can be seen as a lower bound of what can be
attained for Camellia with these techniques. In this preliminary document, we
only report results for the full Camellia since those are most interesting.

The properties of the key schedule are highly important to make a biclique
attack work. In Camellia, one can observe that the key schedule is designed to
make it robust to related-key di�erential attacks. This is do ne by maintaining
di�erent types of intermediate keys: K L and K A for Camellia-128 as well asK L ,
K R , K A and K B for Camellia-192 and Camellia-256, whereK A and K B depend
in a complex way onK L or K L and K R , respectively. Moreover, the key schedule
is such that no three adjacent rounds use subkeys from eitherK L and K R or
K A and K B . This complicates the biclique construction and makes its e�ective
length shorter. It is also the reason to enumerate the keys with respect to a base
key of K L jK R in each key group.

Applying this approach to Camellia, we report key recovery results as follows.
For the full Camellia-128, we can recover the key with a complexity of 2127:6, da-
ta complexity 2128, negligible memory complexity and success probability 1. We
have found a key recovery for the full Camellia-192 with computational com-
plexity 2191:7, data complexity 2128, negligible memory complexity and success
probability 1. For the full Camellia-256, we report a key recovery with a compu-
tational complexity of 2255:7, data complexity 2128, negligible memory complexity
and success probability 1. Note that if we just apply exhaustive MITM key re-
covery without constructing a biclique structure, it is possible to convert these
attacks to lower data complexity attacks at the expense of anincrease in the
computational complexity. We choose not to do so since the time complexities of
the key recoveries are quite high even with bicliques.
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Table 2. Summary of our biclique key recoveries for full Camellia

cipher rounds attack type data time memory
Camellia-128 18 (of 18) biclique MITM 2128 2127 :6 small
Camellia-192 24 (of 24) biclique MITM 2128 2191 :7 small
Camellia-256 24 (of 24) biclique MITM 2128 2255 :7 small

5.2 Base line: complexity of brute force

We understand brute force key recovery for a cipher with ak-bit key as the
complete computation of the cipher encryption on each of the2k keys. The �rst
and most time-consuming �ltering stage can be performed using one plaintext-
ciphertext pair then, followed by subsequent and much less frequent tests if need-
ed. So before discussing advantages of any other key recovery procedure, one
needs to establish a base line for the respective computation of relative advantage
{ namely, quantify the complexity of the brute force key recovery with success
probability 1.

For Camellia, just in line with the computational model intr oduced in the
biclique attacks for AES, the unit will be the application of an 8-bit S-box. This
is arguably the most consuming component in terms of implementations | both
software (table lookups or bitslice) or hardware (ASIC or FPGA).

Table 3. Computational base line for Camellia (brute force)

cipher data transform key schedule total total
(rounds) (rounds) (rounds) (S-boxes)

Camellia-128 18R 4R 22R 176
Camellia-192 24R 6R 30R 240
Camellia-256 24R 6R 30R 240

As indicated in Table 3, one Camellia-128 computation requires in total 176
S-box applications, since each round transform includes 8 S-box applications and
there is an equivalent of 22 rounds in the full Camellia-128.Similar applies to
Camellia-192 and Camellia-256 yielding a total of 240 S-boxapplications.

5.3 Independent bicliques over 2 rounds

We describe here how to construct an independent biclique ofdimension 8 over
2 rounds of a 6-round block in Camellia. For this, one needs tospecify rounds
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such that round 3 and 4 of the 6-round block use keyK L or K R . In all Camellia
versions, there are such pairs of numbers even usingK L only. So without un-
necessary loss of generality, we construct bicliques in therounds as speci�ed in
Table 4.

Table 4. 2-round bicliques and key modi�cation for Camellia

cipher type key modi�cation subkey round number

Camellia-128
forward one byte (K L <<< 15)L (64) 3

backward one byte (K L <<< 15)R (64) 4

Camellia-192
forward one byte (K L <<< 45)L (64) 9

backward one byte (K L <<< 45)R (64) 10

Camellia-256
forward one byte (K L <<< 45)L (64) 9

backward one byte (K L <<< 45)R (64) 10

The key modi�cation in both forward and backward directions is in 8 bits
which corresponds to an independent biclique of dimension 8. The actual biclique
construction is outlined in Figure 12.

In the backward direction, one byte key modi�cation in round 4 of the 6-round
block in the backward direction activates 5 bytes at the output of the F -function
due to the speci�c choice of the byte position according to the speci�cation of P.
This, in turn, activates 5 bytes at the input of the F -function in round 3 of the
6-round block, which can activate 8 bytes at the output of this function.

In the forward direction, a similar key modi�cation is appli ed. In round 3 of
the 6-round block, a single byte of the round subkey is activated which gives 5
active bytes at the output of the F -function in that round. In the next round,
this yields 5 active S-boxes and an 8-byte active output pattern.

We show now how this construction forms an independent 2-round biclique
of dimension 8. First, we require that the input di�erence at t he input of round-3
F -function in the backward propagation does not include the byte of key modi�ca-
tion in the forward direction. And vice versa, we require that the input di�erence
at the input of round-4 F -function in the forward propagation does not cover
the byte of key modi�cation of the backward propagation. Obviously, this can
be easily attained by inspecting the P-layer. Now we observe that though we
have a lot of di�erence intersections in the backward and forward directions over
the 2 rounds, they never intersect in the non-linear components (S-boxes). This
su�ces for the construction of an independent biclique. Then, we see that we can
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Fig. 12. Independent biclique construction over 2 rounds of Camellia: Numbers
indicate the number of active bytes in the F -function right after the subkey
addition and right after the P-layer. Numbers in grey circles indicate spots of
key di�erence injections

inject up to an 8-bit di�erence in each direction. This de�nes the dimension of
the biclique to be 8.

5.4 Partial matching over 3 rounds

Having construction a biclique, we can apply recomputationwith precomputation
over the biclique area to save operations. Moreover, we can have more savings
due to partial matching which is illustrated in Figure 13.

We match in round 4 of a 6-round block in one byte of a 8-byte half state.
This requires the recomputation of only 5 bytes in rounds 3 and 5 but full re-
computations of rounds 1,2, and 6 (8 S-boxes each).

5.5 Recomputation over the remaining rounds and in the key
schedule

All S-boxes in the remaining rounds of the data transform need to be recomputed
for every key. In the key schedule though, some more savings are possible. A glance
at the key schedule of Camellia (see Figure16) suggests that no full recomputation
is necessary given the type of key modi�cation we have employed.
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Fig. 13. Partial matching over 3 rounds for Camellia: Numbers indicate the num-
ber of bytes to be recomputed in the corresponding lines. Thenumber in grey
circle indicates the byte of matching

In Camellia-128, we need to computeK A from every modi�cation of K L . This
requires at most 4 rounds. However, since our key modi�cation is in two distinct
bytes of K L which are in two distinct 64-bit halves of the user-suppliedkey, only
one S-box needs to be recomputed in the �rst round. 5 bytes areactived at the
output of this F -function and at the input of the F -function in the second round.
Thus, we need to compute only 6 S-boxes instead of 16 in the �rst two rounds.

In Camellia-192 and Camellia-256, bothK A and K B need to be computed
from K L and K R . We have no modi�cation in K R and only single-byte modi�-
cation in two distinct 64-bit halves of K L again. So again we have a saving of 10
S-box computations in the key schedule recomputation.

5.6 Complexity

In total, we have saved 14 S-box computations due to the construction of the
biclique, 16 S-box computations due to the partial matchingand another 10 S-
box computations due to the optimized recomputation in the key schedule. This
results in 40 S-boxes saved per key tested.

Memory complexity in the biclique construction and recomputations within
the key group is negligible because of the limited biclique dimension. The compu-
tational complexity for Camellia-128 is de�ned by the advantage factor of 176

176� 40
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and amounts to about 2127:6. For Camellia-192 and Camellia-256, the advantage
factor is 240

240� 40 which brings the computational complexity to 2191:7 and 2256:7,
respectively. Note that we do not take into account the complexity of biclique
construction since the dimension of the biclique is large enough to make it negli-
gible.

The data complexity of this key recovery is 2128, that is, the full codebook.
Due to the speci�cation of the key schedule { both the computation of the subkeys
and the order of their usage in rounds { it is challenging to have both a non-trivial
biclique (accounting for more computation savings) and a lower data complexity.
For instance, in Camellia-128, if key modi�cation is in K L , then K A will look
random for each key modi�cation which will lead to the propagation of the key
modi�cation to the full state at the plaintext or ciphertext , depending on where
the biclique is exactly put. Similar applies to Camellia-192 and Camellia-256.

6 Zero Correlation Cryptanalysis of Camellia

6.1 Summary

In the course of the key recovery in zero correlation linear cryptanalysis, the
correlation of a linear approximation over a part of the cipher needs to be eval-
uated for many key guesses. While the length of the underlying zero correlation
approximation mainly determines the number of rounds that can be attacked, it
is the partial encryption and decryption of plaintexts and ciphertexts up to the
boundaries of the linear approximation that dominates the computational com-
plexity of the attack. We use the discrete Fast Fourier transform to reduce the
computational complexity at this end. For data complexity r eduction, the novel
multidimensional zero-correlation distinguisher is applied. Though some cryptan-
alysts prefer to skip FL/FL � 1 functions for simplicity, we analyze Camellia-192
and Camellia-256 with FL/FL � 1 functions, ensuring that we actually cryptana-
lyze Camellia transform and not a related variant.

For a generic construction like Camellia (balanced Feistelnetwork), there are
numerous of zero-correlation linear approximations over only 5 rounds. However,
for Camellia, we are able to identify a bunch of 7-round zero-correlation linear ap-
proximations due to the properties of the FL/FL � 1 functions and the F-functions
of the round transformation.

For 11-round Camellia-192, we report a key recovery requiring 2125:1 data,
2157:79 operations equivalent to 11 rounds of Camellia-192 as well as 2101 blocks
of memory. For 12-round Camellia-256, we have identi�ed a key recovery using
2125:9 data, 2234:31 operations equivalent to 12 rounds of Camellia-192 as well as
2165 blocks of memory. The 7-round zero-correlation linear approximations are of
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the form (0bb0bb0bj00000000)! (00000000jh00h0hhh) whereband h are nonzero
bytes.

Table 5. Summary of our zero correlation attacks on round-reduced Camellia
with FL=FL � 1 functions

cipher rounds attack type data time memory
Camellia-192 11 of 24 zero correlation 2125 :1 2157 :79 2101

Camellia-256 12 of 24 zero correlation 2125 :9 2234 :31 2165

6.2 7-round zero-correlation linear approximations for Camellia
with F L=F L � 1 functions

In this section, we will present some zero-correlation linear hulls for 7-round
Camellia with FL=FL � 1 function. Firstly, we will introduce some properties for
FL=FL � 1.

Property 1: If the input mask of FL function is IM = (0 j0j0j0j0ji j0j0); the
output mask of FL function OM = (0 j?j?j0j0j?j?j0); where "?" is an unknown
value.

Proof. If we denote the input mask for IM = IM L jIM R and OM = OML jOMR ,
from the de�nition of FL , we have

OML = IM L � (( IM R o 1) \ kL ); OMR = ( OML [ kR ) � IM R :

As
IM L = 0 ;

OML = (( IM R o 1) \ kL ) = ((0 ji j0j0) o 1) \ kL = (0 j?j?j0)

and
OMR = ((0 ; ?; ?; 0) [ kR ) � (0ji j0j0) = (0 j?j?j0):

ut

Similarly, we can get the following relation betweenIM and OM for FL function,

IM = (0 j0j0j0j0j0j0ji ) ) OM = (? j0j0j?j?j0j0j?):
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Property 2: If the output mask of FL � 1 function is OM = ( i j0j0j0j0j0j0j0); the
input mask of FL � 1 function IM = ( i jj0j0j?jj0j0): If OM = (0 j0j0j0ji j0j0j0);
it holds that

IM = (? j?j0j0j?j?j0j0):

Proof. From the de�nition of FL � 1, we have

IM L = OML � (OMR (o 1) \ kL ); IM R = ( IM L [ kR ) � OMR :

As
OM = (0 ji j0j0j0j0j0j0);

one has that
OMR = 0

and
OML = (0 ji j0j0):

Then we have IM L = OML = (0 ji j0j0) and IM R = (0 j?j0j0); where "?" is the
unknown value.

As OM = (0 j0j0j0ji j0j0j0); we have that OML = 0 and OMR = ( i j0j0j0):
Then we have

IM L = ( OMR o 1) = (? j?j0j0)

and
IM R = ((? j?j0j0) [ kR ) � (0ji j0j0) = (? j?j0j0);

where "?" is the unknown value. ut

In the similar way, we can get the following relations between IM and OM for
FL � 1,

OM = (0 ji jj0j0j0j0j0) ) IM = (0 ji jj0j0j?j?j0);

OM = (0 j0ji j0j0j0j0j0) ) IM = (0 j0j0ji j0j0j0j?);

OM = (0 j0j0ji j0j0j0j0) ) IM = (0 j0j0ji j0j0j0j?);

OM = (0 j0j0j0j0ji j0j0) ) IM = (0 j?j?j0j0j?j?j0);

OM = (0 j0j0j0j0j0ji j0) ) IM = (0 j0j?j?j0j0j?j?);

OM = (0 j0j0j0j0j0j0ji ) ) IM = (? j0j0j?j?j0j0j?):

With the above properties, we can get some zero-correlationlinear hulls for
7-round Camellia.
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Type 1: For 7-round Camellia consisting of

(F jF jF jF jFL=FL � 1jF jF jF );

if the input mask of the �rst round is

(0jbjbj0jbjbj0jb;0j0j0j0j0j0j0j0)

and the output mask of the last round is

(0j0j0j0j0j0j0j0; hj0j0jhj0jhjhjh);

the correlation of the linear hull for the 7-round Camellia is zero, whereb; h 2
F8

2; b 6= 0 ; h 6= 0.

Proof. From Fig. 14(a), the input mask

(0jbjbj0jbjbj0jb;0j0j0j0j0j0j0j0)

produces the input mask
(0j0j0j0j0jaj0j0)

for FL function, and the output mask

(0j0j0j0j0j0j0j0; hj0j0jhj0jhjhjh)

results in the output mask

(f 1jf 2jf 3jf 4jf 5jf 6jf 7jf 8 � i )

for FL function, where

a; b; h; i; ck (k 2 f 2; 3; 5; 7; 8g); gl (l 2 f 1; 4; 5; 6; 7g)

and f j (1 � j � 8) are non-zero value. From Property 1, if the input mask forFL
function

IM = (0 j0j0j0j0jaj0j0);

the output mask
OM = (0 j?j?j0j0j?j?j0):

Then f 1 = 0 ; f 4 = 0 ; f 5 = 0 and f 8 � i = 0. According to the relations between
f j and gl , the following equations should hold,

f 4 = 0 ) g1 � h � g5 � g6 � h � g7 � h = g1 � g5 � g6 � g7 � h = 0 ;
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Fig. 14. Zero-correlation linear approximations for 7-round Camellia
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f 5 = 0 ) g1 � h � g5 � g7 � h � h = g1 � g5 � g7 � h = 0 :

From the above two equations, we can deduceg6 = 0, which contradicts that
g6 6= 0. As a result, the linear hull is a zero-correlation linear hull.

There is another zero-correlation linear hull for 7-round Camellia which is as
follows

(bj0j0jbj0jbjbjb;0j0j0j0j0j0j0j0) 7r! (0j0j0j0j0j0j0j0; 0jhjhj0jhjhj0jh):

The input mask
(bj0j0jbj0jbjbjb;0j0j0j0j0j0j0j0)

and the output mask

(0j0j0j0j0j0j0j0; 0jhjhj0jhjhj0jh)

will result that the input mask is IM = (0 j0j0j0j0j0j0ja) and the output mask is

(f 1jf 2jf 3jf 4jf 5jf 6 � i jf 7jf 8)

for FL function. From Property 1, the input mask for FL function

IM = (0 j0j0j0j0j0j0ja);

and the output mask is OM = (? j0j0j?j?j0j0j?). Then f 2 = 0 ; f 3 = 0 ; f 6 � i = 0
and f 7 = 0. According to the relations between f j and gl , the following equations
should hold,

f 2 = 0 ) g3 � h � g5 � h � g7 � g8 � h = g3 � g5 � g7 � g8 � h = 0 ;

f 7 = 0 ) g3 � h � g5 � h � h � g7 = g3 � g5 � g7 � h = 0 :

It is easy to deduce that g8 = 0, which contradicts that g8 6= 0. As a result, the
linear hull is also a zero-correlation linear hull. ut

Type 2: For 7-round Camellia consisting of

(F jF jF jFL=FL � 1jF jF jF jF );

if the input mask of the �rst round is

(0jbjbj0jbjbj0jb;0j0j0j0j0j0j0j0)

and the output mask of the last round is

(0j0j0j0j0j0j0j0; hj0j0jhj0jhjhjh);

the correlation of the linear hull for the 7-round Camellia is zero, whereb; h 2
F8

2; b 6= 0 ; h 6= 0, see Fig. 14(b).
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Proof. From Fig. 14(b), the input mask

(0jbjbj0jbjbj0jb;0j0j0j0j0j0j0j0)

produces the input mask

(f 1jf 2jf 3jf 4jf 5jf 6 � ajf 7jf 8)

for FL � 1 function, and the output mask

(0j0j0j0j0j0j0j0; hj0j0jhj0jhjhjh)

produces the output mask
(0j0j0j0j0j0j0ji )

for FL � 1 function, where a; b; h; i; ck (k 2 f 2; 3; 5; 7; 8g); gl (l 2 f 1; 4; 5; 6; 7g) and
f j (1 � j � 8) are non-zero value. From Property 2, the output mask forFL � 1

function OM = (0 j0j0j0j0j0j0ji ), the input mask IM = (? j0j0j?j?j0j0j?). Then
f 2 = 0 ; f 3 = 0 ; f 6 � a = 0 and f 7 = 0. According to the relations between f j and
gl , the following equations should hold,

f 2 = 0 ) c3 � b � c5 � b � c7 � c8 � b = c3 � c5 � c7 � c8 � b = 0 ;

f 7 = 0 ) c3 � b � c5 � b � c7 � b = c3 � c5 � c7 � b = 0 :

So we can derive thatc8 = 0, which contradicts that c8 6= 0. As a result, the
linear hull is also a zero-correlation linear hull. ut

There are some similar zero-correlation linear hulls for 7-round Camellia as
follows:

(bj0j0jbj0jbjbjb;0j0j0j0j0j0j0j0) 7r! (0j0j0j0j0j0j0j0; 0jhjhj0jhjhj0jh);

(bjbj0j0jbj0jbjb;0j0j0j0j0j0j0j0) 7r! (0j0j0j0j0j0j0j0; 0j0jhjhjhjhjhj0);

(0j0jbjbjbjbjbj0; 0j0j0j0j0j0j0j0) 7r! (0j0j0j0j0j0j0j0; hjhj0j0jhj0jhjh);

(0jbjbjbj0jbjbjb;0j0j0j0j0j0j0j0) 7r! (0j0j0j0j0j0j0j0; 0jhjhjhj0jhjhjh);

(bj0jbjbjbj0jbjb;0j0j0j0j0j0j0j0) 7r! (0j0j0j0j0j0j0j0; hj0jhjhjhj0jhjh);

(bjbj0jbjbjbj0jb;0j0j0j0j0j0j0j0) 7r! (0j0j0j0j0j0j0j0; hjhj0jhjhjhj0jh);

(bjbjbj0jbjbjbj0; 0j0j0j0j0j0j0j0) 7r! (0j0j0j0j0j0j0j0; hjhjhj0jhjhjhj0):

To save on space, we will not provide the proof for these zero-correlation linear
approximations here.

38



7-round zero correlation
 linear hull

(0,b,b,0,b,b,0,b)

(0,0,0,0,0,0,0,0) (h|0|0|h|0|h|h|h)

KS P �p

KS P �p

KS P �p
�p �p

KS P �p

KS P �p

�p �p

kw1 kw2

kw3 kw4

(*,0,0,*,*,*,*,0)
(0,0,0,0,0,0,0,*)

(0,0,0,0,0,0,0,0)

(0,b,b,0,b,b,0,b)

(0,0,0,0,0,b,0,0)

(0,0,0,0,0,*,0,0)

(0,0,0,0,0,*,0,0)

(0,*,*,0,*,0,*,*)

(0,*,*,0,*,0,*,*)

(0,*,*,0,*,0,*,*)(*,*,*,*,*,*,*,*)

(0,0,0,0,0,0,0,h)

CL CR

PL PR
k1

k2

k3

k11

k12

(a)

7-round zero correlation
 linear hull

(0,b,b,0,b,b,0,b)

(0,0,0,0,0,0,0,0) (h|0|0|h|0|h|h|h)

KS P �p

KS P �p
�p �p

KS P �p

KS P �p

�p �p

kw1 kw2

kw3 kw4

(*,0,0,*,*,*,*,0)
(0,0,0,0,0,0,0,*)

(0,0,0,0,0,0,0,0)

(0,b,b,0,b,b,0,b)

(0,0,0,0,0,b,0,0)

(0,0,0,0,0,*,0,0)

(0,0,0,0,0,*,0,0)

(0,*,*,0,*,0,*,*)

(0,*,*,0,*,0,*,*)

(0,0,0,0,0,0,0,h)

CL CR

PL PR
k1

k2

k10

k11

(b)

Fig. 15. Zero correlation linear attacks on 12-rounds Camellia-256and 11-rounds
Camellia-192
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6.3 Attack on 12-round Camellia-256

We use the 7-round zero-correlation linear approximationsto attack 12-round
Camellia-256, see Fig.15(a). In Fig. 15(a), we also try to determine the mask
value before or after the 7-round zero-correlation linear hull, where � denotes that
the mask value for the corresponding byte position cannot bedetermined.

In the following, we will use some notations.X i 1 ;i 2 ;::: denotes the i1-th, i2-
th, : : : byte of X and X can be the plaintext word, ciphertext word or subkey
word, Sj denotes the output of the j -th S-Box, Fj denotes the output of the
round function for the j -th round and F l

j denotes the l-th output byte of the
round function for the j -th round. If we denote K 0 = kw1 � k1, K 1 = kw2 � k2,
K 2 = kw1 � k3, K 3 = kw3 � k11, and K 4 = kw4 � k12, we can get the following
linear approximation:

bT � P6
R � hT � C8

R � � T � P2;3;5;8
R � � T � C1;4;6;7

R � bT � S6(P6
L � K 6

0)

� bT � S6f P6
L � K 6

2 � F 6
2 [P2;3;5;7;8

R � K 2;3;5;7;8
1 � F1(P1;:::;8

L � K 1;:::;8
0 )g

� hT � S8[C8
L � K 8

11 � F 8
5 (C1;4;5;6;7

R � K 1;4;5;6;7
4 )] = 0 :

(5)

where � T = ( b; b; b; b), � T = ( h; h; h; h), b 2 F28 ; b 6= 0, h 2 F28 ; h 6= 0.
In order to express Equation (5) as a circulant matrix, we will �x some pa-

rameters to obtain the following circulant matrix:

M (P1;2;3;4;5;7;8
L jC5

R jC1;4;6;7
R ^ ( �hj �hj �hj �h); K 1;2;3;4;5;7;8

0 jK 5
4 jK 1;4;6;7

4 ^ ( �hj �hj �hj �h) =

� T � P2;3;5;8
R � � T � C1;4;6;7

R � bT � S6(P6
L � K 6

0)

� bT � S6f P6
L � K 6

2 � F 6
2 [P2;3;5;7;8

R � K 2;3;5;7;8
1 � F1(P1;:::;8

L � K 1;:::;8
0 )]g

� hT � S8[C8
L � K 8

11 � F 8
5 (C1;4;5;6;7

R � K 1;4;5;6;7
4 )]:

(6)

In Equation ( 6), P6
L has also been involved outside the round functionF1, so we

must �x the value of P6
L . Moreover, in order to use more zero-correlation linear

hulls, more values ofh will be taken. At the same time, in order to control the
time complexity, we will take all values for h with the Hamming weight one or
two. It means that C1;4;6;7

R ^ (hjhjhjh) have been involved in � T � C1;4;6;7
R , so

we must �x the value of bits C1;4;6;7
R ^ (hjhjhjh) and express the remaining bits

C1;4;6;7
R ^ ( �hj �hj �hj �h) in circulant matrix. Here �h = h � f f x .

We proceed with the attack as follows:
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{ Set the global counterC� as zero for each of 2160 possible values of

� = ( K 1;2;3;4;5;6;7;8
0 jK 2;3;5;7;8

1 jK 6
2 jK 8

3 jK 1;4;5;6;7
4 ):

{ For h 2 S and b 2 F28 ; b 6= 0, S = f x : 1 � W (x) � 2; x 2 F28 g, jSj =� 8
2

�
+

� 8
1

�
= 36, where W (x) is the Hamming weight of x:

� Data counting phase:
1. For N plaintext-ciphertext pairs, extract 56 + 4 W (h) bits value

i = ( P2;3;5;7;8
R jP6

L jC1;4;6;7
R ^ (hjhjhjh)jC8

L )

and the corresponding 64 + 4(8� W (h)) bits value

j = ( P1;2;3;4;5;7;8
L jC5

R jC1;4;6;7
R ^ ( �hj �hj �hj �h)) :

2. Increment the counter j of the vector x i according to the parity of

bT � P6
R � hT � C8

R :

� Key counting phase: For each possible 64 + 4W (h) bits value k of

(K 6
0 jK 6

2 jK 2;3;5;7;8
1 jK 8

3 jK 1;4;6;7
4 ^ (hjhjhjh)) :

1. For each possible 56 + 4W (h) bits value

(P2;3;5;7;8
R jP6

L jC1;4;6;7
R ^ (hjhjhjh)jC8

L ) :

compute

Z = � T � P2;3;5;8
R � � T � C1;4;6;7

R ^ (hjhjhjh) � b � S6(P6
L � K 6

0 ):

(a) Select the corresponding vector of countersx i

(b) Compute the �rst column M i of the matrix

M i (P
1;2;3;4;5;7;8
L jC5

R jC1;4;6;7
R ^ ( �hj �hj �hj �h);

K 1;2;3;4;5;7;8
0 jK 5

4 jK 1;4;6;7
4 ^ ( �hj �hj �hj �h)) =

(� 1)Z � bT �S6 f P 6
L � K 6

2 � F2 [P 2;3;5;7;8
R � K 2;3;5;7;8

1 � F1(P 1;::: 8
L � K 1;::: 8

0 )]g�

(� 1)hT �S8 [C8
L � K 8

3 � F 8
5 (C1;4;5;6;7

R � K 1;4;5;6;7
4 )] :
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As M i is (64 + 4(8 � W (h)))-level circulant, this information is
su�cient to de�ne M completely (requires 264+4(8 � W (h)) operations
which are equivalent to

264+4(8 � W (h)) � (1 + 5
8 + 1

8 + 5
8 + 1

8)=12 = 264+4(8 � W (h)) � 2:5=12 =

264+4(8 � W (h)) � 2:26 = 2 93:74� 4W (h)

12-round encryptions.
(c) The evaluation of the linear approximation for the subset of texts

with the corresponding

(P2;3;5;7;8
R jP6

L jC1;4;6;7
R ^ (hjhjhjh)jC8

L )

value is given by the matrix vector product � i = M � x i which
requires

3 � 2(64+4(8 � W (h))) � (64 + 4(8 � W (h))))

operations1. This approaches to

3 � 2(64+4(8 � W (h))) � (64 + 4(8 � W (h))))

times of one-round Camellia encryption.
2. The global vector of bias� b jh

k for the particular choice of (bjh) and

(K 6
0 jK 6

2 jK 2;3;5;7;8
1 jK 8

3 jK 1;4;6;7
4 ^ (hjhjhjh))

is the sum of � i : � b jh
k =

X

i

� i .

3. Let C� = C� + ( � b jh
k =N)2.

We obtain 2160 counters for C� corresponding to the evaluation of the bias
of the linear approximation for the 160-bit subkey guess. The correct subkey is
then selected among the candidates withC� less than the threshold

t = � 0 � z1� � 0 + � 0 =

p
2l

N
� z1� � 0 +

l
N

=

p
2 � 213:16

N
� 2 +

213:16

N
=

213:20

N
:

From the section on data complexity reduction, the number ofknown plaintext-
ciphertext pairs should satisfy the following condition:

N �
2n+0 :5

p
l

(z1� � 1

r

1 +
2N
2n + z1� � 0 ):

1 From [28], the k-level matrix vector product can be computed with 3 ti mes of 2k -point Fast
Fourier Transform.
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If we set � 0 = 0 :023 and � 1 = 2 � 98, we get z1� � 0 = 2 and z1� � 1 = 11:37.
n = 128; l = 255 � 36 = 213:16. As N = 2 125:9, the above condition can be satis�ed.

The memory requirements in the data counting phase and the key counting
phase are 2152 nibbles and 292 nibbles, respectively. The memory requirements
for the global counters C� are 2160 256-bit words. Therefore, the whole memory
complexity is about 2165 bytes.

The time complexity for the data counting phase is 213:16 � 2126:3 = 2 139:46

memory accesses. In step (b) of the key counting phase, the time complexity is

28� 272 � 264 � 293:74� 4�2 + 8 � 268 � 260 � 293:74� 4 = 2 226:58

12-round Camellia encryptions. In step (c) of the key counting phase, the time
complexity is

8 � (268 � 260 � 3 � 92 � 292) + 28 � (272 � 264 � 3 � 88 � 288)) = 2 236:89

times of one-round encryptions which is equivalent to 2233:30 times of 12-round
encryptions.

Due to � 1 = 2 � 98 and the total number of recovered bits is 160, the number
of the remaining subkey values is 2� 98 � 2160 = 2 62.

Then we use another 7-round zero-correlation linear hull with

� = ( b;0; 0; b;0; b; b; b)

and
� = (0 ; h; h; 0; h; h; 0; h)

to proceed the above key recovery attack, and we can recoverK 1;4;6
1 ; K 8

2 ; K 6
3 and

K 2;3;8
4 , the time complexity and the memory complexity are equal to that in the

�rst attack. Due to � 1 = 2 � 98 and the total number of recovered bits is 160,
the number of the remaining subkey values is 2� 98 � 2160 = 2 62. Therefore, the
total number of the remaining subkey values is about 262 � 262 = 2 124. The right
key from the �rst attack and the second attack should has the same value for
the 96 shared subkey bits, so the remaining number of subkey values should be
2124 � 2� 96 = 2 28.

According to the key schedule for Camellia-256, its 256-bitmaster key is
K = K L kK R , whereK L and K R are 128 bits. With K L and K R , the key schedule
algorithm �rst calculates K A and K B , which is described in Fig.16. F is the round
function of Camellia and Ci (1 � i � 6) are constants used as the subkeys. Then
the round subkey kwi (i = 1 ; : : : ; 4), kr (r = 1 ; : : : ; 24) and kl j (j = 1 ; : : : ; 6) are
derived from rotating K L ; K R ; K A or K B .
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Fig. 16. The Calculation of K A and K B

K 0 = ( K L n 0)L � (K B n 0)L ; (7)

K 1 = ( K L n 0)R � (K B n 0)R ; (8)

K 2 = ( K L n 0)L � (K R n 15)L ; (9)

K 3 = ( K A n 45)L � (K B n 111)L ; (10)

K 4 = ( K A n 45)R � (K B n 111)R : (11)

Now we have recovered 64-bitK 0, 64-bit K 1, 64-bit K 4, 16-bit K 6;8
2 and 16-bit

K 6;8
3 , we can recover the master key with the following procedure:

For each of 228 remaining subkey values and for each of 2128 values ofK B :

1. Compute K L from Equation (7) and Equation (8).
2. Compute (K A n 45)R from Equation (11), and it means that K 0� 44;109� 127

A
has been deduced.
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3. Compute K 85� 92;101� 108
A from Equation (10) and K 55� 62;71� 78

R from Equation
(9).

4. Decrypt from K B to K A with Fig. 16, and we can derive 96-bitK R .
5. For each possible remaining 32-bit value forK 45� 54;63� 70;79� 84;93� 100

R , deduce
the master key K = K L kK R .

6. Using two pairs of plaintext-ciphertext to verify the master key K .

The right guess forK B and K 45� 54;63� 70;79� 84;93� 100
R can always pass the veri�ca-

tion for step 6, but the wrong guess will pass the veri�cation with the probability
2� 96. So we can recover the master key with high probability. The time complex-
ity to recover the master key is much less than that to recover160-bit subkey in
the previous, so it can be negligible.

In all, the data complexity is about 2125:9 known plaintexts, the time com-
plexity is about 2234:31 12-round Camellia-256 encryptions and the memory re-
quirements are 2165 bytes.

6.4 Attack on 11-round Camellia-192

We use the 7-round zero-correlation linear approximationsto attack 11-round
Camellia-192, see Fig.15(b). If we denote K 0 = kw1 � k1, K 1 = kw2 � k2, K 2 =
kw3 � k10, and K 3 = kw4 � k11, the following linear approximation can be derived:

b � P6
L � h � C8

R � � T � P2;3;5;8
L �

� T � C1;4;6;7
R � bT � S6[P6

R � K 6
1 � F 6

1 (P2;3;5;7;8
L � K 2;3;5;7;8

0 )]�

hT � S8[C8
L � K 8

2 � F 8
4 (C1;4;5;6;7

R � K 1;4;5;6;7
3 )] = 0 ;

(12)

where � T = ( b; b; b; b), � T = ( h; h; h; h), b 2 F28 ; b 6= 0, h 2 F28 ; h 6= 0.
In order to express Equation (12) as a circulant matrix, some parameters need

to be �xed to obtain the following circulant matrix:

M (P7
L jP2;3;5;8

L ^ ( �bj �bj �bj �b)jC5
R jC1;4;6;7

R ^ ( �hj �hj �hj �h);

K 7
0 jK 2;3;5;8

0 ^ ( �bj �bj �bj �b)jK 5
3 jK 1;4;6;7

3 ^ ( �hj �hj �hj �h)) =

� T � P2;3;5;8
L � � T � C1;4;6;7

R � bT � S6[P6
R � K 6

1 � F 6
1 (P2;3;5;7;8

L � K 2;3;5;7;8
0 )]

� hT � S8[C8
L � K 8

2 � F 8
4 (C1;4;5;6;7

R � K 1;4;5;6;7
3 )]:

(13)

The attack can be described in the following way:
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{ Set the global counterC� as zero for each of 296 values of

� = ( K 2;3;5;7;8
0 jK 6

1 jK 8
2 jK 1;4;5;6;7

3 ):

{ For h 2 S and b 2 S with

S = f x : 1 � W (x) � 4; x 2 F28 g

and

jSj =
�

8
4

�
+

�
8
3

�
+

�
8
2

�
+

�
8
1

�
= 162:

� Data counting phase:
1. For N plaintext-ciphertext pairs, extract 16 + 4 W (b) + 4 W (h) bits

value

i = ( P2;3;5;8
L ^ (bjbjbjb)jP6

R jC1;4;6;7
R ^ (hjhjhjh)jC8

L )

and the corresponding 16 + 4(8� W (b)) + 4(8 � W (h)) bits value

j = ( P7
L jP2;3;5;8

L ^ ( �bj �bj �bj �b)jC5
R jC1;4;6;7

R ^ ( �hj �hj �hj �h)) :

2. Increment the counter j of the vector x i according to the parity of

b � P6
L � h � C8

R :

� Key counting phase: For each possible 16 + 4W (b) + 4 W (h) bits value k
of

(K 6
1 jK 2;3;5;8

0 ^ (bjbjbjb)jK 8
2 jK 1;4;6;7

3 ^ (hjhjhjh)) :

1. For each possible 16 + 4W (b) + 4 W (h) bits value

(P2;3;5;8
L ^ (bjbjbjb)jP6

R jC1;4;6;7
R ^ (hjhjhjh)jC8

L ) :

(a) Select the corresponding vector of countersx i

(b) Compute the �rst column M i of the matrix

M i (P7
L jP2;3;5;8

L ^ ( �bj �bj �bj �b)jC5
R jC1;4;6;7

R ^ ( �hj �hj �hj �h);

K 7
0 jK 2;3;5;8

0 ^ ( �bj �bj �bj �b)jK 8
3 jK 1;4;6;7

3 ^ ( �hj �hj �hj �h))

= ( � 1)� T �P 2;3;5;8
L � � T �C1;4;6;7

R � bT �S6 [P 6
R � K 6

1 � F 6
1 (P 2;3;5;7;8

L � K 2;3;5;7;8
0 )] �

(� 1)hT �S8 [C8
L � K 8

2 � F 8
4 (C1;4;5;6;7

R � K 1;4;5;6;7
3 )] :
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As M i is (16 + 4(8 � W (b)) + 4(8 � W (h)))-level circulant, this
information is su�cient to de�ne M completely. This requires

216+4(8 � W (b))+4(8 � W (h))

operations which are equivalent to

216+4(8 � W (b))+4(8 � W (h)) � ( 5
8 + 1

8 + 5
8 + 1

8)=11 =

216+4(8 � W (b))+4(8 � W (h)) � 1:5=11 = 277:13� 4W (b)� 4W (h)

11-round encryptions.
(c) The evaluation of the linear approximation for the subset of texts

with the corresponding

(P2;3;5;8
L ^ (bjbjbjb)jP6

R jC1;4;6;7
R ^ (hjhjhjh)jC8

L )

value is given by the matrix vector product � i = M �x i . This requires

9 � 2(16+4(8 � W (b))+4(8 � W (h))) � (16 + 4(8 � W (b)) + 4(8 � W (h)))

clock cycles.
2. The global vector of bias� b jh

k for the particular choice of (bjh) and

(K 6
1 jK 2;3;5;8

0 ^ (bjbjbjb)jK 8
2 jK 1;4;6;7

3 ^ (hjhjhjh))

is the sum of � i : � b jh
k =

X

i

� i .

3. Let C� = C� + ( � b jh
k =N)2.

We obtain 296 counters for C� corresponding to the evaluation of the bias of
the linear approximation for the 96-bit subkey guess. The correct subkey is then
selected among the candidates withC� less than the threshold

t = � 0 � Z1� � 0 + � 0 =

p
2l

N
� Z1� � 0 +

l
N

=

p
2 � 214:68

N
� 2 +

214:68

N
=

214:69

N
:

From Theorem 1 in Section of Data Complexity Reduction, the number of
known plaintext-ciphertext pairs should satisfy the following condition:

N �
2n+0 :5

p
l

(z1� � 1

r

1 +
2N
2n + z1� � 0 ):
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If we set � 0 = 0 :023 and � 1 = 2 � 106, we get z1� � 0 = 2 and z1� � 1 = 11:85.
n = 128; l = 2 14:68. As N = 2 125:1, the above condition can be satis�ed.

The memory requirements in the data counting phase and the key counting
phase are 296 32-bit words and 272 nibbles, respectively. The memory require-
ments for the global counters C� are 296 256-bit words. Therefore, the whole
memory complexity is about 2101 bytes.

The time complexity for the data counting phase is 214:68 � 2125:1 = 2 139:78

memory accesses. In step (b) of the key counting phase, the time complexity is
about �

8
4

�
�
�

8
4

�
� 277:13+16+16+4 �4+4 �4 = 2 153:39

11-round Camellia encryptions.
In step (c) of the key counting phase, the time complexity is about

�
8
4

�
�
�

8
4

�
�216+4 �4+4 �4+16+4 �4+4 �4+16+32+32 � 4�4� 4�4�9�(16+32+32� 4�4� 4�4)) = 2 165:01

clock cycles, which is equivalent to 2165:01 �24=(326�11) = 2157:79 11-round Camel-
lia encryptions. Therefore, the whole time complexity is about 2157:79 11-round
Camellia encryptions.

Due to � 1 = 2 � 106, the total number of recovered bits is 96, the number of
the remaining wrong subkey values is 2� 106 � 296 = 2 � 10.

Then we use other 7-round zero-correlation linear hulls to recover other subkey
bits as follows:

1. Use (bj0j0jbj0jbjbjb;0j0j0j0j0j0j0j0) 7r! (0j0j0j0j0j0j0j0; 0jhjhj0jhjhj0jh); to re-
cover K 1;4;6

0 , K 8
1 , K 6

2 and K 2;3;8
3 .

2. Use (bjbj0j0jbj0jbjb;0j0j0j0j0j0j0j0) 7r! (0j0j0j0j0j0j0j0; 0j0jhjhjhjhjhj0) to re-
cover K 5

1 and K 7
2 .

3. Use (0j0jbjbjbjbjbj0; 0j0j0j0j0j0j0j0) 7r! (0j0j0j0j0j0j0j0; hjhj0j0jhj0jhjh) to re-
cover K 7

1 and K 5
2 .

4. Use (0jbjbjbj0jbjbjb;0j0j0j0j0j0j0j0) 7r! (0j0j0j0j0j0j0j0; 0jhjhjhj0jhjhjh) to re-
cover K 1

1 and K 1
2 .

5. Use (bj0jbjbjbj0jbjb;0j0j0j0j0j0j0j0) 7r! (0j0j0j0j0j0j0j0; hj0jhjhjhj0jhjh) to re-
cover K 2

1 and K 2
2 .

6. Use (bjbj0jbjbjbj0jb;0j0j0j0j0j0j0j0) 7r! (0j0j0j0j0j0j0j0; hjhj0jhjhjhj0jh) to re-
cover K 3

1 and K 3
2 .

7. Use (bjbjbj0jbjbjbj0; 0j0j0j0j0j0j0j0) 7r! (0j0j0j0j0j0j0j0; hjhjhj0jhjhjhj0) to re-
cover K 4

1 and K 4
2 .
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The time complexity with the later zero-correlation linear hull is much less than
that with the �rst zero-correlation linear hull attack beca use many subkey bits
have been recovered in the �rst attack, so we can ignore it. Now, we have recovered
K 0; K 1; K 2 and K 3.

The key schedule for Camellia-192 is similar as that for Camellia-256. The
only di�erence is that the 192-bit master key K = K L jK R and K RR = K RL .
According to the key schedule, we can write the following equations:

K 0 = ( K L n 0)L � (K B n 0)L ; (14)

K 1 = ( K L n 0)R � (K B n 0)R ; (15)

K 2 = ( K L n 45)R � (K B n 111)L : (16)

K 3 = ( K A n 45)L � (K B n 111)R ; (17)

We will implement the following procedure to recover the 192-bit master key.
For each of the 2128 values ofK B :

1. Compute K L from Equation (14) and Equation (15).
2. Verify if K L and K B satisfy Equation (16), if so, go to next step.
3. Compute (K A n 45)L = K 45� 108

A from Equation (17).
4. For all 219 possible values ofK 109� 127

A to get K AR :

(a) Decrypt from K B to K AR with Fig. 16, and derive K RR to obtain the
master key K = K L kK RR .

(b) Using one pair of plaintext-ciphertext to verify the master key K .

The right guess for K B and K 109� 127
A can always pass the veri�cation for step 4,

but the wrong guess will pass the veri�cation with the probability 2 19+64 � 128 =
2� 45. So we can recover the master key with high probability. The time complexity
to recover the master key is much less than that to recover 96-bit subkey in the
previous, so it can be negligible.

In all, the data complexity is 2125:1 known plaintexts, the time complexity is
about 2157:79 11-round Camellia-192 encryptions, and the memory requirements
are about 2101 bytes.
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7 Biclique Cryptanalysis of CLEFIA

7.1 Summary

Again, we concentrate ourselves on the independent biclique approach with at
most a single-byte key modi�cation, since this proved to be the way to go with
AES so far. Since CLEFIA has MDS matrices and the local SPN structure similar
to that of AES, it is reasonable to assume that such biclique attacks will do a
good job also for CLEFIA. As in the case of Camellia, we adopt the approach
of unlimited data complexity meaning a lower bound on the computational com-
plexity of independent bicliques. It turns out though that t he full codebook is
never needed for CLEFIA.

The key schedule of CLEFIA is complex compared to that of AES.Like in
Camellia, it again relies on an intermediate keyL which is computed from the
user-supplied keyK in a highly nonlinear manner. Now the subkeys in every
round (except for the whitening keys that depend on K only) depend on L .
The subkeys in rounds 3 and 4 in each 4-round block additionally depend onK .
This limits the length of bicliques compared to AES. We have found an e�cient
key enumeration only for CLEFIA-128 and CLEFIA-256. Here we enumerate
the keys in each group with respect toL , since there are adjacent rounds where
the computation only depends on L . For CLEFIA-192, not every value of L
corresponds to a valid keyK . The results reported below for CLEFIA-192 are
based on partial matching computational advantage only, that is, MITM without
the biclique initial structure. Here we enumerate keys with respect to K .

Our biclique results for CLEFIA are as follows. For the full CLEFIA-128, we
report a key recovery with computational complexity 2127:7 CLEFIA-128 opera-
tions, data complexity 264, negligible memory complexity and success probability
1. For the full CLEFIA-192, there is a MITM key recovery with c omputational
complexity of 2191:5 CLEFIA-192 executions, negligible memory and data com-
plexities as well as success probability 1. For the full CLEFIA-256, a key recovery
requires 2255:5 CLEFIA-256 executions, data complexity 264, negligible memory
complexity and success probability 1. The low data complexity MITM-only at-
tack on CLEFIA-128 and CLEFIA-256 is also possible which would lead to an
increase in the computational complexity and is hence not reported.

7.2 Cost of brute force key recovery: establishing base line

To establish the base line for the subsequent comparisons, we derive the com-
plexity of the brute force key recovery that involves one full computation of the
cipher for every key.
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Table 6. Summary of our biclique key recoveries for full CLEFIA

cipher rounds attack type data time memory
CLEFIA-128 18 (of 18) biclique MITM 264 CP 2127 :7 small
CLEFIA-192 22 (of 22) MITM 2KP 2191 :5 small
CLEFIA-256 26 (of 26) biclique MITM 264 CP 2255 :5 small

For CLEFIA, according to the standard computational model of biclique
cryptanalysis, the unit will be again (as for AES and Camellia) the applica-
tion of an 8-bit S-box. Similarly to AES, this is arguably the most consuming
component in terms of implementations. As for AES and as opposed to Camellia,
4x4-byte MDS di�usion matrices are employed in CLEFIA. However, �rstly, it
almost always goes with S-box computations (no separate account needed) and,
secondly, the contribution of the matrix-vector multiplic ation is rather limited
compared to 4 8-bit S-boxes in most implementations.

Table 7. Cost of brute force for CLEFIA

cipher data transform key schedule total total
(F -functions) (F -functions) (F -functions) (S-boxes)

CLEFIA-128 18R=36F 12R=24F 60F 240
CLEFIA-192 22R=44F 10R=40F 84F 336
CLEFIA-256 26R=52F 10R=40F 92F 368

As shown in Table 7, one CLEFIA-128 computation needs 240 S-box applica-
tions, since eachF -function includes 4 S-box applications and there are equiva-
lently 60 F -functions rounds in the full CLEFIA-128. Similar derivati on holds for
CLEFIA-192 and CLEFIA-256 resulting in 336 and 368 S-boxes,respectively, in
total. The di�erence for CLEFIA-192 and CLEFIA-256 is though that instead of
12 rounds of a 4-line type-II GFN for CLEFIA-128, 10 rounds ofa 8-line type-II
GFN are used, involving 4F -functions per round instead of 2F -functions.

7.3 Constructing bicliques over 2 rounds for CLEFIA-128 and
CLEFIA-256

Unlike for Camellia, we will construct an independent biclique using two forward
computations. In CLEFIA-128 and CLEFIA-256, we enumerate keys in a key
group with respect to L . We place the key modi�cation in the subkeys in round
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1. SubkeysRK 0 and RK 1 are just the �rst 64 bits of L added with a constant
string of bits. We construct bicliques as speci�ed in Table8.

The length of bicliques is limited by the key schedule. In a block of 4 rounds,
only rounds 1 and 2 depend onL only. Rounds 3 and 4 of a 4-round block, depend
on both L and K . Given the complex relation betweenL and K , this modi�es
the computation in rounds 3 and 4 completely even if only a slight change has
been made toL .

Table 8. 2-round bicliques and key modi�cation for CLEFIA

cipher type key modi�cation subkey round number

CLEFIA-128
forward 1 one byte RK 0 1
forward 2 one byte RK 1 1

CLEFIA-192 - one byte W K 0 whitening

CLEFIA-256
forward 1 one byte RK 0 1
forward 2 one byte RK 1 1
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Fig. 17. Building a biclique over 2 rounds of CLEFIA-192 and CLEFIA-256:
Numbers indicate the number of active bytes in theF -function right after the
subkey addition and right after the di�usion layer. Numbers i n grey circles indi-
cate the spots of key di�erence injections

The key is modi�ed only in the forward direction: one forward modi�cation
is in the left-hand F -function and the other one is the right-hand F -function.
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Since we modify a byte, the dimension of the biclique is 8. Theactual biclique
construction is outlined in Figure 17.

In the left-hand modi�cation, the injection byte in RK 0 activates the entire
output of F0 in round 1 which in turn activates the input and output of F0 in
round 2. In the right-hand modi�cation, the injection byte i n RK 1 activates the
entire output of F1 in round 1 and, thus, the input to and output of F1 in round
2.

It is easy to see that this is an independent 2-round bicliqueof dimension 8:
The forward key modi�cations are such that the propagations in both of them
are entirely independent for two rounds.

7.4 Key enumeration for CLEFIA-192

In CLEFIA-192, the keys are enumerated with respect toK . We can be more
precise and say that we modify one byte inK L which corresponds to a byte mod-
i�cation in one of the two prewhitening keys W K 0 or W K 1. The exact position
of this modi�cation is rather not important since the operat ion of the �rst round
depends onL that in turn depends on K in a complex way. This will make the
computation starting from the �rst round as for a completely fresh key.

Note that we cannot e�ciently construct a nontrivial indepe ndent biclique for
CLEFIA-192. This is due to the fact that we want to enumerate the keys with
respect to L since there are rounds in CLEFIA data path that just depend on L .
However, not every value ofL to corresponds to a valid value ofK (user-supplied
key) in CLEFIA-192. This is because of the redundancy that isintroduced to K
before it is passed to the 10-round 8-line type-II GFN for thederivation of L :
The last 64 bits of the input depend on other 64 bits inK .

7.5 Partial matching over 5 rounds

The construction of the CLEFIA data transform is such that is allows for a partial
matching over 5 rounds. These matching rounds can be placed in the middle
of the cipher. An illustration is provided in Figure 18. As opposed to biclique
construction, partial matching can be performed for all CLEFIA versions.

We match the middle of the 5 rounds in one byte of a 4-byte quarter state. It
su�ces to recompute 16 S-boxes instead of 40 that would be needed for matching
on the full state, resulting in a saving of 24 S-boxes. Note that no recomputation
is needed in round 3 of the 5-round block. Only 4 S-boxes need to be recomputed
in the other 4 rounds.
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Fig. 18. Partial matching over 5 rounds of CLEFIA: Numbers indicate t he num-
ber of bytes to be recomputed in the corresponding lines. Thenumber in grey
circle indicates the byte of matching

7.6 Recomputing the key schedule

Though the key recovery does not specify any further savingsin the data trans-
form of CLEFIA and all S-boxes in the remaining rounds have tobe recomputed
for every key, some more savings are possible in the key schedule.

In CLEFIA-128, the key schedule consists of 12 rounds of the data transform
applies to K with constants as round keys to obtainL . Since we enumerate keys
with respect to L , we need to apply decryption for every modi�cation of L . Since
we modify in two distinct 32-bit subkeys, this will have e�ect on two lines of input
to the inverse 4-line GFN. The �rst 3 of 12 rounds do not have to be recomputed
entirely. One S-box is recomputed in round 1, 4 S-boxes in round 2 and 5 S-boxes
in round 3 of the inverse GFN. This results in a saving of 10 S-boxes.
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In CLEFIA-192, keys are enumerated with respect to K . A single byte is
modi�ed there. So we have to check how many computations are actually needed
in the forward 8-line 10-round type-II GFN if only a byte of it s input gets modi-
�ed. In round 1, no S-boxes need recomputation. Only 1 S-box is recomputed in
round 2, followed by 4 S-boxes in round 3 and 5 in round 4. Similarly, we can see
that even in round 8 only 13 out of 16 S-boxes need recomputation. In rounds 9
and 10, all 16 S-boxes are recomputed. In total, this yields 84 S-boxes instead of
160 which gives a saving of 76 S-boxes. Similarly, for CLEFIA-256, we obtain a
saving of 60 S-boxes.

7.7 Complexity

In total, we have saved 16 S-box computations due to the construction of the
biclique for CLEFIA-128 and CLEFIA-256 and 0 S-boxes for CLEFIA-192, 24
S-box computations due to the partial matching, as well as another 10, 76 and
60 S-box computations due to the optimized recomputation inthe key schedule,
in CLEFIA-128, CLEFIA-192, and CLEFIA-256, respectively. This results in
coincidentally round numbers of 50, 100 and 100 S-boxes saved per key tested,
correspondingly.

Thus, the computational complexity for CLEFIA-128 is

240� 24� 16� 10
240

2128 � 2127:7:

For CLEFIA-256, we have time complexity of

368� 24� 16� 60
368

2256 � 2255:5:

For CLEFIA-192, we need

336� 24� 76
336

2256 � 2191:5

computations without the biclique saving. Note that we do not take into account
the complexity of biclique construction since the dimension of the biclique is large
enough to make it negligible. Memory complexity in the biclique construction and
recomputations within the key group is negligible because of the limited biclique
dimension.

The data complexity for CLEFIA-192 is just the unicity dista nce which is 2
known- plaintexts here, due to the absence of any initial structure. For CLEFIA-
128 and CLEFIA-256, we start with a constant value for all keys after prewhiten-
ing and before round 1 where the forward modi�cations are applied. So in the
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backward recomputation, the only parts of the plaintext a�ec ted by the modi�-
cations are the 64 bits whitened by the prewhitening which depends onK . So
the data complexity is 264 chosen plaintexts.

8 Zero Correlation Linear Cryptanalysis of CLEFIA

8.1 Summary

For many ciphers, especially for those with XOR addition of the round subkeys,
the partial encryption and decryption in the basic zero correlation cryptanalysis
is performed many times for the same value. The technique is to precompute
all required intermediate values for all key bits involved into partial encryp-
tion/decryption and to store them instead of recomputing again once needed.
This technique can be seen as equivalent to the discrete FastFourier Transform
and signi�cantly reduces the computational complexity of the zero correlation
linear cryptanalysis at the expense of introducing some memory complexity.

The data transform of CLEFIA (type-II generalized Feistel network with 4
lines) exhibits a set of about 232 9-round zero-correlation linear approximations of
the form (0; 0; 0; a) ! (a;0; 0; 0). So we have a budget of about 232 approximations
for the data complexity reduction with the multidimensiona l zero-correlation dis-
tinguisher. We can attain either a data complexity reduction of factor about 216

or trade it o� for time complexity reduction and/or more atta cked rounds when
combined with the discrete FFT.

Our zero correlation results for CLEFIA are the following. For the purpose
of evaluation, we only report the attacks on the highest numbers of rounds we
have found, even if they require the full codebook. As a matter of fact, we can
attack less rounds with much lower complexities. First, as regards CLEFIA-192,
we can attack 13 rounds of it using 2125:8 data and 2159:56 operations equivalent
to 13 rounds of CLEFIA-192, and 2104 blocks of memory. Second, we can attack
14 rounds of CLEFIA-256 with 2128 texts, 2222 time, and 2136 blocks of memory.

Table 9. Summary of our zero correlation attacks on round-reduced CLEFIA

cipher rounds attack type data time memory
CLEFIA-192 13 zero correlation 2125 :8 2159 :56 2104

CLEFIA-256 14 zero correlation 2128 2222 2136
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8.2 9-round zero-correlation linear approximations for CLEFIA and
distiguisher

In this section, we will give some zero-correlation linear hulls for 9-rounds CLE-
FIA. We �nd ( a; 0; 0; 0) ! (0; 0; 0; a), with input select pattern ( a; 0; 0; 0) and
output select pattern (0; 0; 0; a),a s described in the �gure. We can use the linear
hulls to attack more rounds block cipher.
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Fig. 19. 9-round zero-correlation linear approximation for CLEFIA -type ciphers
(type-II generalized Feistel network) with balanced F-functions

The original zero-correlation linear analysis used only a few linear approxima-
tions and had a high data complexity close to 2128 for CLEFIA. That is to say,
we should use all the plaintext-ciphertext pairs. If we want to reduce the data
complexity we should use more linear hulls.

We will be using the following technique to reduce the data complexity of our
attacks:

{ Distinguishing between two normal distributions
Consider two normal distributions, which can be seen as randomly drawn
permutation and real block cipher respectively:N (� 0; � 0) with mean � 0 and
standard deviation � 0, and N (� 1; � 1) with mean � 1 and standard deviation
� 1. Without loss of generality, assume that � 0 < � 1. A sample s is drawn
from either N (� 0; � 0) or N (� 1; � 1). It has to be decided if this sample is from
N (� 0; � 0) or from N (� 1; � 1). The text is performed by comparing the values
to some threshold valuet. If s � t, the test returns " s 2 N (� 0; � 0)", otherwise,
if s > t , the test returns " s 2 N (� 1; � 1)". There will be error probabilities of
two types:
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� 0 = Pr " s 2 N (� 1; � 1)" js 2 N (� 0; � 0)

� 0 = Pr " s 2 N (� 1; � 1)" js 2 N (� 0; � 0)

Here conditions are given on� 0; � 1; � 0; � 1 such that the error probabilities are
not higher than � 0 and � 1.
For the test to have error probabilities of at most � 0 and � 1, the parameters

of the normal distributions N (� 0; � 0) and N (� 1; � 1) with � 0 < � 1 have to
be such that

z1� � 1 + z1� � 0

� 1 � � 0
� 1:

{ Known plaintext distinguisher for many zero-correlation linear hulls.
Let the adversary be givenN known plaintext-ciphertext pairs and ` zero-
correlation linear hulls for an n-bit block cipher with a �xe d secret key. The
adversary aims to distinguish between this cipher and a randomly drawn
permutation.
The procedure is as follows. For each of thè given linear hulls, the adversary
computes the numberTi of times the linear hull is ful�lled on N plaintexts,
i 2 1� � � `. Each Ti suggests an empirical correlation valueCi = 2 Ti

N � 1. Then
the adversary evaluates the statistic:

P `
i =1 (C2

i ) =
P `

i =1 (2Ti
N � 1)2 (18)

It is expected that for the cipher with ` known zero-correlation linear hulls,
the value of statistic (1) will be lower than for random ` linear approximations
of a random drawn permutation. In a key-recovery setting, the right key will
result in statistic (1) being among the lowest values for allcandidate keys if
` is high enough.
In the sequel, we treat this more formally.

{ Data complexity for the distinguisher
For ` zero-correlation linear hulls,each of the valuesCi in (1) will be approxi-
mately distributed as N (0; 1=

p
N ). For a random permutation and a random

linear approximation, the value of Ci will be approximately distributed as
N (bi ; 1p

N
), where bi is the exact value of the correlation which is itself dis-

tributed as N (0; 2� n=2).
Now we will derive the distribution of statistic (1) in these two cases.
1. Cipher: zero-correlation linear hulls In case we deal with ` zero-correlation

linear hulls:

X̀

i =1

C2
i �

`X

i =1

N 2(0; 1=
p

N ) = 1 =N
X̀

i =1

N 2(0; 1) = 1=N� 2
`
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Where � 2
` is the � 2-distribution with ` degree of freedom which has mean

` and standard deviation
p

2`. For su�ciently large `, � 2
` converges to the

normal distribution. That is, � 2
` approximately follows N (`;

p
2`).and:

P `
i =1 C2

i � 1=N� 2
` � 1=NN (`;

p
2`) = N ( `

N ;
p

2`
N ) (19)

Consider ` nontrivial zero-correlation linear hulls for a block cipher with
a �xed key. If N is the number of plaintext-ciphertext pairs, Ti is the
number of times such a linear hull is ful�lled for i = 1 � � � `, and ` is
high enough, then the following approximate distribution holds:

X̀

i =1

(2
Ti

N
� 1)2 � N (

`
N

;

p
2`

N
)

2. Random permutation: random linear approximations In case we deal with
a randomly drawn permutation, the ` given linear hulls will correspond to
a set of random linear approximations. Thus, as mentioned above:

X̀

i =1

C2
i �

X̀

i =1

N 2(bi ; 1=
p

N ); where bi � N (0; 2� n=2)

Consider` random nontrivial linear approximations for a randomly drawn
permutation. If N is the number of plaintext-ciphertext pairs, Ti is the
number of times such a linear hull is ful�lled for i = 1 � � � `, and ` is
high enough, then the following approximate distribution holds:

X̀

i =1

(2
Ti

N
� 1)2 � N (

`
N

+
`

2n ;
1
N

r

2(` + 2 `
N
2n ))

3. Combining what has been said, one obtains the condition:

z1� � 0
1
N

q
2(` + 2 ` N

2N ) + z1� � 1
1
N

p
2`

( `
N + `

2n ) � `
N

� 1

For an n-bit block cipher, let ` nontrivial zero-correlation linear hulls be
given. Then, to distinguish it from a randomly drawn permuta tion with
probability � 1 of false positives and probability � 0 of false negatives,
a number N of known plaintext-ciphertext pairs is su�cient if the
following condition is ful�lled:

2n+0 :5

N
p

`
(z1� � 0

r

1 +
2N
2n + z1� � 1 ) � 1
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The success probability of an attack is de�ned by the probability � 0 of false
negatives. The probability � 1 of false positives determines the number of
surviving key candidates and, thus, the complexity of the key recovery.
Making � 0 � 0:023 and� 1 � 2� 50:5. Thus the following statement holds:
For probability � 0 � 0:023 of false negatives, probability� 1 � 2� 50:5 of

false positives, andN � 2n� 1, the condition on the data complexity
is:

N �
2n+3 :94

p
`

:

8.3 Attack on 13-round CLEFIA-192

We take advantage of a large number of 9-round zero-correlation linear approx-
imations of (a; 0; 0; 0) ! (0; 0; 0; a) kind to attack 13-round CLEFIA-192, the
approximation covers round 3 to 11, and has 32 active bits in the �rst and last
round. Now we �nd out 392 � 32 di�erent linear hull of this type and we also
make sure all� have the following property: when they go through the inverse of
the M 1 they have only one active byte, but when they go through the inverse of
the M 0 they have 4 active bytes. This kinds of� can be made sure that have the
lowest time complexity.

Let us denote by E = ( E0 ; E1 ; E2; E3) the value of the encryption state
at the beginning of the third round, and by D = ( D 0 ; D 1 ; D 2 ; D 3) the value
of encryption state at the end of the 11 round. All the possible 9-round zero-
correlation linear approximation used can be written as:aT � E0 � aT � D 3 . In
order to evaluate the bias of this linear approximations, wehave to perform a
partial encryption of two �rst rounds and a partial decrypti on of the two last
rounds.

According to the structure of CLEFIA, we can get the following relations:

aT � E0 =
aT � P2 � aT � F0(RK 2 � WK 0 � P1 � F0(RK 0 � P0))

(20)

aT � D 3 =
aT � C2 � aT � F1(RK 2r � 3 � WK 2 � C1 � F0(RK 2r � 2 � C0))

(21)

For compactness, we will be using the following notation:

K 0 = RK 0

K 1 = RK 2 � WK 0

60



F0 �† F1

F0 F1

F0 F1

F0 F1

�†

�† �†

�† �†

�† �†

K0=RK0

K1=RK2�p WK0

K2=RK2r-3 �p WK2

K3=RK2r-2

P0 P1 P2 P3

C0 C1 C2 C3

Fig. 20. Zero correlation linear attack on 13-round CLEFIA-192
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K 2 = RK 2r � 3 � WK 2

K 3 = RK 2r � 2

the linear approximation can be written as:

aT � (P2 � C2) � aT � F0(K 1 � P1 � F0(K 0 � P0))
� aT � F1(K 2 � C1 � F0(K 3 � C0))

(22)

We want to use FFT methods to reduce the time complexity, which the linear
approximation is required to be expressed as a circulant matrix. We can observe
that neither aT � F0(K 1 � P1 � F0(K 0 � P0) nor aT � F1(K 2 � C1 � F0(K 3 � C0))
can be expressed as a circulant matrix becauseK 1 and K 2 need to be guessed and
moreover, P1 and C1 need to be traversed. However, by guessing of �xing these
parameters, it is possible to decompose the expression in smaller parts which
involve the following circulant matrix:

M (P0jC0; K 0jK 3) =
aT � F0(K 1 � P1 � F0(K 0 � P0)) � aT � F1(K 2 � C1 � F0(K 3 � C0)) :

(23)

The attack works as follows:

{ Data counting phase:
1. For each of the 240 value i of (P1 ; C1), de�ne vector x i of 240 counters.
2. For each of the plaintext-ciphertexts (P; C), extract the 40 bits value

i = ( P1 ; C1) and the 64-bit value j = ( P0 ; C0)
3. Increment or decrement the counterj of the vector x i according to the

parity of aT � (P2 � C2).
{ Key counting phase: For each possible 40-bit valuek of (K 1jK 2):

1. For each possible 40-bit value of (P1 ; C1):
(a) Select the corresponding vector of countersx i

(b) Compute the �rst column M i of the matrix

M i (P0jC0; K 0jK 3) =
(� 1)aT �F 0 (K 1 � P 1 � F 0 (K 0 � P 0 )) � aT �F 1 (K 2 � C 1 � F 0 (K 3 � C 0 )) :

As M i is 64-level circulant, this information is su�cient to de�n e M
completely (requires 264 operations).

(c) The evaluation of the linear approximation for the subset of texts with
the corresponding (P1jC1) value is given by the matrix vector product
� i = M � x i (requires 64� 264 operations).

2. The global vector of bias� k for the particular choice of (K 1jK 2) is the sum
of � i : � k =

X

i

� i .
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At the end of the key counting phase, we obtain 240 vectors � k of size 264

corresponding to the evaluation of the linear approximation of the bias of the
linear approximation for the 104-bit key guess (K 0 ; K 1 ; K 2 ; K 3). The correct key
is then selected among the candidates with a corresponding counter equal to 0.
We want to reduce the data complexity down to 2125:8 from 2128, we choose 213:61

di�erent � to evaluate the correlation. The data counting phase has a memory
complexity of 2104 counters since we must store 240 vectors of 264 counters. Its
time complexity is the number of plaintext-ciphertext pair s N = 2 125:8. The key
counting phase is dominated by the matrix vector product, which is performed for
every guess ofK 1jK 2 and every choice ofP1jC1. The time complexity of this phase
is thus 213:61 � 240 � 240 � 64� 264 � 9 = 2166:78 clock cycles. CLEFIA-192 encryption
need 15:8 cycles for a byte, then 15:8 � 16 cycles for 16 bytes. We also know that
CLEFIA-192 is 22 rounds, then 13 rounds CLEFIA here need 252:8=22� 13 = 149
cycles. Then the time complexity is: 2166:78=149 = 2159:56.
The output linear pattern to evaluate becomes:

bT � D
0

= bT � (M � 1
1 (C2) � S1(K 2 � C1 � F0 (K 3 � C0))) (24)
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Fig. 21. Selection pattern beforeM 1
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8.4 Attack on 14-round CLEFIA-256

We also use the 9-round zero-correlation linear approximation to attack 14-
round CLEFIA-256. This approximation covers round 4 to 12, and has 32 ac-
tive bits in the �rst and last round. Let us denote by E = ( E0 ; E1 ; E2 ; E3),
the value of the encryption state at the beginning of the fourth round, and by
D = ( D 0 ; D 1 ; D 2 ; D 3) the value of the encryption state at the end of 12 round.
In order to evaluate the bias of this approximations, we perform a partial encryp-
tion of three �rst rounds and a partial decryption of the two l ast rounds, then the
9-round zero-correlation linear approximation can by written as:aT �E0 � aT �D3.

The relations can be derived:

aT � E0 =
aT � (P3 � F1(k1 � P2) � F0(k3 � P2 � F0(k2 � P1 � F0(k0 � P0))))

(25)

aT � D3 = aT � (C2 � F1(k4 � C1 � F0(k5 � C0))) (26)

We have:

aT � E0�
aT � D3 =
aT � (P3 � C2)�
aT � (F1(k1 � P2) � F0(k3 � (P2) � F0(k2 � F0(k0 � P0)))) �
aT � F1(k4 � C1 � F0(k5 � C0))

(27)

Guess the key bits (k1 ; k2 ; k3 ; k4), and �xing the parameters ( P1 ; P2 ; C1), it is
possible to decompose the expression in smaller parts whichinvolve the following
circulant matrix:

M (P0jC0; k0jk5) =

aT � (F1 � (k1 � P2) � F0(k3 � P2 � F0(k2 � P1 � F0(k0 � P0)))) �
aT � F1(k4 � C1 � F0(k5 � C0)) :

(28)

The attack proceeds as follows:

{ Data counting phase:
1. For each of the 272 valuesi of (P1 ; P2 ; C1), de�ne vector x i of 272 counters.
2. For each of the plaintext-ciphertext (P; C), extract the 72 bits values

i = ( P1 ; P2 ; C1) and the 64 bits value j = ( P0 ; C0).
3. Increment or decrement the counterj of the vector x i according to the

parity of aT � (P3 � C2).
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Fig. 22. Zero correlation linear attack on 14-round CLEFIA-256
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{ Key counting phase: for each possible 80-bit valuek of (k1 ; k2 ; k3 ; k4):
1. For each possible 72-bit valuei of (P1 ; P2 ; C1):

(a) Select the corresponding vector of countersx i

(b) Compute the �rst column M i of the matrix

M i (P0jC0; k0jk5) =

(� 1)aT �(F1 �(k1 � P2)� F0 (k3 � P2 � F0(k2 � P1 � F0(k0 � P0)))) � aT �F1(k4 � C1 � F0 (k5 � C0 )) :

As M i is 64-circulant, this information is su�cient to de�ne M com-
pletely (requires 264 operations).

(c) The evaluation of the linear approximation for the subset of texts with
the corresponding (P1 ; P2 ; C1) value is given by the matrix vector
product � i = M � x i (requires 64� 264 clock cycles.)

2. The global vector of bias� k for the particular choice of (k1 ; k2 ; k3 ; k4) is
the sum of � i : � k =

X

i

� i .

At the end of the key counting phase, we obtain 280 vectors � k of size of 264

corresponding to the evaluation of the bias of the linear approximation for the
144-bit subkey guess. The correct subkey is then selected among the candidates
with a corresponding counter equal to 0. The data counting phase has a memory
complexity of 2136 counters since we must store 272 vectors of 264 counters, its
time complexity is the number of plaintext-ciphertext pair s N = 2 128. The key
counting phase is dominated by the matrix vector product. which is performed
for every guess of (k1 ; k2 ; k3 ; k4) and every choice of (P1 ; P2 ; C1), the time
complexity of this phase is thus 280 � 272 � 64 � 264 = 2 222 operations.

9 Biclique and MITM Cryptanalysis of SC2000

9.1 Summary

The computational advantage over brute force that can be gained with indepen-
dent biclique key recovery usually originates from two major sources. First, if a
biclique of a signi�cant length can be built, the recomputat ion cost of the states
at the boundaries of the biclique for each key covered by the biclique is relatively
small. Second, if the structure of the cipher in question allows one to perform
partial matching over a considerable number of rounds (which mainly depends
on how fast the di�usion in the data transformation is), one obtains an additional
advantage in computational complexity.
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The key enumeration in biclique key recovery is usually donein some suitable
round subkey or several round subkeys (for forward and backward key modi�ca-
tion). The attacker's hope is then that some local change in the subkey(s) will
only cause local modi�cations in the internal state (block of data being operated
with) for a signi�cant number of rounds in both forward and ba ckward direc-
tions. Another important issue to make the key recovery successful is to ensure
the near-to-full coverage of the user-supplied keys with the biclique construction.

Even for ciphers with a slow local di�usion in the data transform, constructing
bicliques of signi�cant length can be made complex by complex and/or non-
invertible key schedules. This is due to the complication with the enumeration of
the keys with respect to the base key in a biclique. The complication can be both
due to the shortage in master key coverage that would destroyany computational
advantage one can get though constructing a biclique and dueto the complex
dependencies of the block data to be operated with on the forward/backward
modi�cation of the subkey. The structure of the SC2000 key schedule is such
that it does not allow one to e�ciently construct independen t bicliques.

However, even if one deals with a complex and non-invertiblekey schedule that
would prohibit the advantage through the biclique construction, it is still possible
to gain computational advantage from the partial matching in an exhaustive
meet-in-the-middle key recovery. Actually, this is the case for SC2000. The results
reported below are due to this type of analysis.

Our cryptanalytic results as regards SC2000 are as follows.For the full SC2000-
128, we report a MITM key recovery with computational complexity equivalent
to 2126:5 SC2000-128 operations including key schedule as well as negligible data
and memory complexities. For the full SC2000-192, we have found a MITM key
recovery with computational complexity equivalent to 2190:6 SC2000-192 opera-
tions incl. key schedule as well as negligible data and memory complexities. For
the full SC2000-256, we provide a MITM key recovery with computational com-
plexity equivalent to 2254:5 SC2000-256 operations incl. key schedule as well as
negligible data and memory complexities. Note that the factors of advantage are
relatively high even given the fact that we were unable to construct bicliques e�-
ciently so far. The relatively high gain is not least due to the heavy key schedule
whose cost can be leveraged in a MITM key recovery.

Table 10. Summary of our biclique key recoveries for full SC2000

cipher rounds attack type data time memory
SC2000-128 6.5 (of 6.5) MITM 1 or 2KP 2126 :5 small
SC2000-192 7.5 (of 7.5) MITM 2KP 2190 :6 small
SC2000-256 7.5 (of 7.5) MITM 2 or 3KP 2254 :5 small
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9.2 Complexity of brute force key recovery

To quantify the complexity of the brute force key recovery with success probability
1, we again look at the non-linear operation of the cipher. For SC2000, there are 3
di�erent types of S-boxes: 4-bit, 5-bit and 6-bit. For the sake of simplicity, we will
consider the complexity of these S-boxes equal in our analysis. Strictly speaking,
this is not true though and the 6-bit S-box is about 4 times more costly to
implement than the 4-bit S-box. However, since there are a lot of S-boxes we will
be counting in the complexity estimations of each type, making this distinction
would not have much e�ect on the complexity estimations here.

Thus, according to the computational model introduced in the biclique attacks
for AES, the unit will be the application of one S-box. The other operations of the
data transform are linear and comparatively less costly. Also for the operation in
the key schedule, the S-boxes account for a major part of computations.

Table 11. Computational base line for SC2000 (brute force)

cipher one B # B one R # R key schedule total
(S-boxes) (S-boxes) (S-boxes)

SC2000-128 32 7 12 12 576 368+576=944
SC2000-192 32 8 12 14 576 424+576=1000
SC2000-256 32 8 12 14 576 424+576=1000

As indicated in Table 11, one SC2000-128 computation requires in total 944
S-box applications, since each round transform includes 7B functions and 12 R
functions and the key schedule requires another 576 iterative applications of the
S-boxes. Similar applies to SC2000-192 and SC2000-256 yielding a total of 1000
S-box applications.

9.3 Key enumeration

The key schedule of SC2000 is non-invertible which complicates the construction
of bicliques. The non-invertibility of the key schedule follows from the fact that
the valuesa, b, c and d in the key schedule are obtained by xoring values derived
from two adjacent master key wordsuk[i ] and uk[i + 1]. Furthermore, the actual
32-bit subkey ek can depend on much more than 2 master key wordsuk due to
the extended-key generation function that is also not invertible in ek.

We do not construct a biclique but still have to enumerate thekeys e�ciently.
We divide the key space into groups and modify at most 5 bits ata time. The
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modi�cation is placed in uk[0] which is the �rst 32 bits of the user-supplied key in
all SC2000 versions. Modifying inuk[0] means that we need to compute the key
schedule only forwards so that its non-invertibility does not matter. In the key
recovery, we start with a base key, modify it and compute forward and backward
looking for a match.

Table 12. Key modi�cation for SC2000

cipher key modi�cation subkey
SC2000-128 5 bits uk[0]
SC2000-192 5 bits uk[0]
SC2000-256 5 bits uk[0]

9.4 Partial matching over 3 rounds

SC2000 does allow for an e�cient partial matching over many rounds due to
the low-di�usion structure of its data transform though. If t he sequence of con-
secutive functions consisting ofI , B , I and double R with appropriate masks
and connections is one round, then it is possible to perform apartial matching
over 3 rounds of SC2000 (out of 6.5 rounds for SC2000-128 and 7.5 rounds for
SC2000-192/256). This allows for savings which is illustrated in Figure 23.

We match in the B function of round 1 in the 3-round block on 8 bits - two
rightmost 4-bit S-boxes in B . While a regular recomputation would require 56
S-box computations, the partial matching requires a recomputation of only 30 S-
boxes in round 1, 14 S-boxes in round 2, and 42 5-boxes in round3 of the 3-round
block. Thus, the total saving through the matching is 82 S-box computations.

9.5 Recomputation in the key schedule

While S-boxes in the remaining rounds of the data transform need to be recom-
puted for every key, there is still some room for savings in the key schedule. In
fact, the brute force computation of the key schedule is far from e�cient.

To compute the values ofa[i ], b[i ], c[i ] and d[i ], we need 4 iterations of a loop
each of which straightforwardly involves 16 layers (S) of 6 S-boxes each (2 6-bit
S-boxes and 4 5-bit S-boxes).

For SC2000-128, out of all those S-boxes, one needs to recompute one S-box
in S(uk[0]) and one S-box inS(uk[4]) as well as the agregations (full layers of 6
S-boxes each) before the �nal linear di�usion to deliver a[i ] and c[i ]. This amounts
to 14 S-box recomputations in the �rst iteration and 12 S-boxes in each of the
following 3 iterations. The saving is 576-50=526 S-boxes.

For SC2000-192, it is one S-box inS(uk[0]) and one in S(uk[6]) that require
recomputation along with the corresponding two full layersfor aggregation, giving
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Fig. 23. Partial matching over 3 rounds for SC2000: Numbers indicatethe num-
ber of S-boxes to be recomputed in the corresponding functions (B or R). The
number in grey circle indicates the point of matching

again 14 S-box recomputations in the �rst iteration and 12 S-boxes in teach of
the subsequent ones, saving again 576-50=526 S-boxes

For SC2000-256, it is only one S-box inS(uk[0]) and the corresponding 6
S-boxes of aggregation, yielding just 7 S-boxes, that need recomputation in the
�rst iteration. Each subsequent iteration involves 6 S-boxes. The saving amounts
to 576-25=551 S-boxes.

We notice that the signi�cant savings in the key schedule aremostly due to the
biclique-type computational model assumed and the ine�ciency of the reference
point. However, we are not aware of a better model here and stick to the standard
one.

9.6 Complexity

The savings are as follows. We have a saving of 82 S-box computations due to
the partial matching and over 500 S-box computations due to the recomputation
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with precomputations in the key schedule. Due to heavy and non-invertible key
schedule, it is di�cult to e�ciently construct non-trivial biclique to attain further
savings.

The computational complexities are:
944� 82� 526

944 2128 � 2126:5 for SC2000-128

1000� 82� 526
1000 2192 � 2190:6 for SC2000-192, and

1000� 82� 551
1000 2256 � 2254:5 for SC2000-256.

We omit the false positive testing complexity and the precomputation complexi-
ties as we have enough matching bits and the key group is largeenough and those
would not have a major impact.

Memory complexity is negligible and is mainly due to the precomputations
while recomputing. The data complexity of this key recovery is just the unicity
distance since we did not employ any initial structure. The data complexity for
SC2000-128 is, thus, 1 or 2 known plaintext-ciphertext pairs, for SC2000-192 it
is 2 known plaintexts and for SC2000-256 one requires 2 or 3 known plaintexts.

10 Executive Conclusions

With respect to the novel biclique cryptanalysis and MITM attacks, all ciphers
investigated (AES, Camellia, CLEFIA, SC2000) exhibit some properties that
allow one to recover the key slightly faster than brute force. Based on our results
so far, one can say that the e�ect of biclique cryptanalysis onCamellia, CLEFIA
and SC2000 is lower than that on AES. Moreover, for AES-128 wehave found
a property akin to that of the complementation property for D ES in terms of
its e�ect on the key recovery: Using just the minimum number of plaintexts
(1 or 2 KP), the key recovery complexity drops from 2128 to 2126:7 AES-128
computations. More speci�cally, we exhaustively analyze the most promising class
of biclique cryptanalysis as applied to AES-128: Namely, under some reasonable
restrictions, we enumerate all its independent bicliques and stars. In this class
of bicliques for AES-128, in a computer-assisted search, we�nd optimal attacks
towards lowest computational and data complexities:

{ Among attacks with the minimal data complexity of the unicit y distance (i.e.
1 known plaintext is enough with probability 1 =e and 2 known plaintexts are
su�cient for success probability 1), the one of computational complexity 2126:7

is fastest. Note that its time complexity is only marginally higher than that
of the original attack, while it requires only 1 or 2 known plaintexts instead
of 288 chosen ciphertexts. This attack has stars instead of balanced bicliques
at its core.
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{ Among attacks with data complexity less than the full codebook, the ones
of computational complexity 2126:16 are fastest. Among those, the one with
data complexity 264 requires the smallest amount of data. Thus, the original
attack did not have the optimal data complexity.

{ Among all attacks covered, the one of computational complexity 2 125:6 is
fastest, though requiring the full codebook. This can be considered as an
indication of the limitations of the independent-biclique attack approach as
applied to AES-128.

Thus, this report explores the limits of the most promising class of bicliques so
far in terms of minimizing time and data complexities.

With respect to zero-correlation linear cryptanalysis, we discovered some
properties over a reduced number of rounds for Camellia and CLEFIA exploitable
for key recovery. Based on our results, one can say that Camellia and CLEFIA
look robust enough to zero correlation cryptanalysis. Whereas we could attack
only less than the half of rounds for Camellia, we were successful for a higher por-
tion of rounds in CLEFIA. Thus, Camellia looks somewhat moresecure against
zero-correlation cryptanalysis than CLEFIA does.
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